HotSnap: A Hot Distributed Snapshot System for Virtual Machine Cluster

Presented by: Dr Jianxin Li
Lei Cui, Bo Li, Yangyang Zhang and Jianxin Li
ACT lab, Beihang University
2013-11-7
Outline

• Background
• Problems
• Solution & Implementation
• Experimental Results
• Conclusions
Background

• **Virtual Machine**
 – Isolation, encapsulation, multi-instance
 – Key technique supporting cloud computing
 – Limited capacity in CPU, memory, storage

• **Virtual Machine Cluster**
 – Multiple VMs are connected together to support powerful capacity
 – Scientific computing, distributed database, web service, etc
Background

- **Failure becomes a norm nowadays**
 - Computer node, Annual failure rate (AFR) is 20~60% per processor [J. Physics’07]
 - Storage node, AFR is 2%~4%, some even 3.9%~8.3% [OSDI’10]
 - Network node, AFR is 1.1%~11.4% [SIGCOMM’11]

<table>
<thead>
<tr>
<th>Component</th>
<th>Disk</th>
<th>Node</th>
<th>Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTTF</td>
<td>10-50 years</td>
<td>4.3 months</td>
<td>10.2 years</td>
</tr>
</tbody>
</table>

- **VM Skills**
 - Migration
 - Tolerate computer node failure
 - vLockstep
 - Tolerate computer node failure
 - Snapshot
 - Tolerate computer node and software failure

Google Cluster
Background

• **Failure becomes a norm nowadays**
 - Computer node, Annual failure rate (AFR) is 20~60% per processor [J. Physics’07]
 - Storage node, AFR is 2%~4%, some even 3.9%~8.3% [OSDI’10]
 - Network node, AFR is 1.1%~11.4% [SIGCOMM’11]

<table>
<thead>
<tr>
<th>Component</th>
<th>Disk</th>
<th>Node</th>
<th>Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTTF</td>
<td>10-50years</td>
<td>4.3months</td>
<td>10.2years</td>
</tr>
</tbody>
</table>

• **VM Skills**
 - Migration
 - Tolerate computer node failure
 - Snapshot
 - Tolerate computer node and software failure

VMC snapshot and rollback occurs frequently to survive from the failures to complete the long time task running in VMC.
Outline

• Background

• Problems

• Solution & Implementation

• Experimental Results

• Conclusions
Problems

• VMC snapshot
 – Single VM snapshot
 • Save memory, disk, CPU and other devices’ state.
 – Consistency protocol
 • Global virtual time
 • m_3 is sent from p_2 after t_1 to p_3 before t_1, violating consistency
 • m_3 should be dropped to keep consistency, but this will lead to TCP-backoff
Problems

• Analysis
 – Current snapshot skill
 • Stop-and-copy
 • Pre-copy

TCP-backoff duration is related to downtime and difference between VMs’ snapshot completion times
Problems

- **Experimental result, a sample**
 - 16 2G memory VMs. Distcc to compile the Linux kernel 2.6.32-5
 - VM₀ is Distcc client, TCP-backoff of VM₀ and VM₁ is 12.7s
Problems

- Experimental result, a sample
 - 16 2G memory VMs. Distcc to compile the Linux kernel 2.6.32-5
 - VM₀ is Distcc client, TCP-backoff of VM₀ and VM₁ is 12.7s

Minimize the downtime of single VM snapshot
Minimize the difference of snapshot completion times between communicating VMs
Details of Pre-copy based VMC snapshot
Outline

• Background
• Problems
• Solution & Implementation
• Experimental Results
• Conclusions
Solutions

• **Key Issues in Pre-copy method**

 – The downtime of single VM snapshot
 • Index tree in disk snapshot, several seconds
 • Final copy in memory snapshot, hundreds to thousands milliseconds

 – The difference of snapshot completion times
 • Iterate copy the memory state. Workload impact.
 • Available IO bandwidth to save memory state

• **HotSnap solutions**

 – Single VM snapshot
 • Copy-on-write (COW) based memory snapshot
 • Redirect-on-write (ROW) based disk snapshot

 – Consistency protocol
 • Suitable to virtualized environments, keep global consistency
Pre-copy vs. HotSnap

Pre-copy method
- Stop VM at the end
- Iterate copy the memory state
- Copy-on-write disk snapshot
- Longer downtime and duration

HotSnap method
- Stop VM first
- Copy-on-write memory snapshot
- Redirect-on-write disk snapshot
- Short downtime and duration

Pre-copy based single VM snapshot

HotSnap for single VM
Solutions

- **HotSnap analysis**
 - Stop VM first, record some metadata, write-protect the memory, resume the VM, and save the state during execution
 - Light-weight operations

TCP-backoff duration is mainly related to **downtime**
HotSnap skills – memory snapshot

- **COW based memory snapshot**
 - Only involve saving CPU, network, and devices’ state, and write-protecting the memory
 - Intercept DMA write operations
 - Uniform view for bitmap and snapshot file
HotSnap skills – memory snapshot

- **COW based memory snapshot**
 - Only involve saving CPU, network, and devices’ state, and write-protecting the memory
 - Intercept DMA write operations
 - Uniform view for bitmap and snapshot file
HotSnap skills – memory snapshot

- **COW based memory snapshot**
 - Only involve saving CPU, network, and devices’ state, and write-protecting the memory
 - Intercept DMA write operations
 - Uniform view for bitmap and snapshot file
HotSnap skills – memory snapshot

- **COW based memory snapshot**
 - Only involve saving CPU, network, and devices’ state, and write-protecting the memory
 - Intercept DMA write operations
 - Uniform view for bitmap and snapshot file
HotSnap skills – memory snapshot

- **COW based memory snapshot**
 - Only involve saving CPU, network, and devices’ state, and write-protecting the memory
 - Intercept DMA write operations
 - Uniform view for bitmap and snapshot file
HotSnap skills – disk snapshot

• **ROW based disk snapshot**
 - Only create one bitmap and one null disk image
 - Lightweight metadata based on bitmap
 - Redirect on write

![Diagram of HotSnap skills](attachment:image.png)
HotSnap skills – disk snapshot

- **ROW based disk snapshot**
 - Only create one bitmap and one null disk image
 - Lightweight metadata based on bitmap
 - Redirect on write
HotSnap skills – disk snapshot

• **ROW based disk snapshot**
 - Only create one bitmap and one null disk image
 - Lightweight metadata based on bitmap
 - Redirect on write
HotSnap skills - Consistency protocol

- Coloring method
 - Set bit in m_cType in MAC header

- Protocol
 - One VM as initiator
 - Initiator broadcast SNAPSHOT to VMs
 - Peer VM create snapshot, if
 - Receive SNAPSHOT
 - Receive red packet
 - VM colors the packet with red flag after finishing snapshot
 - After receiving red packet
 - If snapshot is over, continue to run
 - Else, create snapshot first, change VM state to red
HotSnap Architecture

- **Architecture**
 - VM snapshot
 - Memory Snapshot
 - DMA Write Handler
 - Background Thread
 - Guest Write Handler
 - Disk Snapshot
 - Consistency protocol
 - VMC Snapshot Manager
 - VM Snapshot Manager
 - Packet Mediator
Outline

• Background
• Problems
• Solution & Implementation
 • Experimental Results
• Conclusions
Experimental results

• VM snapshot (2G memory)
 – **Duration**: 60s in HotSnap VS. 50s in Pre-copy, related to snapshot size
 – **Downtime**: HotSnap is less than 50ms, pre-copy is related to workload
 – **Snapshot size**: HotSnap snapshot size is same to memory size, Pre-copy is much larger.

<table>
<thead>
<tr>
<th>benchmarks</th>
<th>Duration (s)</th>
<th>Downtime (ms)</th>
<th>Snapshot size (GBytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-copy</td>
<td>Hotsnap</td>
<td>Pre-copy</td>
</tr>
<tr>
<td>Idle</td>
<td>51.66</td>
<td>51.57</td>
<td>36.83</td>
</tr>
<tr>
<td>Compilation</td>
<td>61.11</td>
<td>51.96</td>
<td>381.72</td>
</tr>
<tr>
<td>Matrix multiplication</td>
<td>51.75</td>
<td>52.31</td>
<td>55.73</td>
</tr>
<tr>
<td>Memcached</td>
<td>69.43</td>
<td>54.72</td>
<td>150.85</td>
</tr>
<tr>
<td>Dbench</td>
<td>60.76</td>
<td>50.18</td>
<td>79.36</td>
</tr>
</tbody>
</table>
Experimental results

• VMC snapshot results
 – 16 2G VMs, 4 physical servers, Distcc to compile kernel
 – Start and end almost at the same time
Experimental results

- TCP backoff
 - Average of difference of snapshot completion times between each two VMs
 - 16 2G memory VMs, 4 physical servers

- Different workloads
- Various VMC size
- Various memory size
- Various disk size
Experimental results

• TCP backoff
 – Average of difference of snapshot completion times between each two VMs
 – 16 2G memory VMs, 4 physical servers

TCP-backoff duration in HotSnap is about 100-200ms, and is regardless of workload, VMC size, VM configurations
Experimental results

- Two VMs with different memory size
 - 1G & 4G has the largest TCP-backoff, 100s
 - Larger difference implies longer TCP-backoff duration for Pre-copy method. HotSnap is regardless of difference.

Memory impact on TCP-backoff
Experimental results

• **Performance impact**

 – **Kernel compilization**

 • Compared to pre-copy, HotSnap reduces 7%-10% time.

 – **BitTorrent application**

 • 16 VMs, one VM as client, others as seeds
 • Compared to normal execution, download speed reduce 28%
 • Compared to pre-copy, HotSnap shows better performance when snapshot reaches over

![Graph showing performance impact](image-url)
Outline

• Background
• Problems
• Solution & Implementation
• Experimental Results
• Conclusions
Conclusions

• **HotSnap**
 - Single VM snapshot
 - Minimize the downtime
 - Minimize the difference of snapshot completion times.
 - Consistency protocol suitable to virtualized environments

• **Experimental results**
 - Single VM snapshot downtime < 100ms
 - 32 VMs, TCP-backoff duration < 1s
 - TCP-backoff is regardless of workload, VMC size, VM configurations

• **Future work**
 - Evaluate HotSnap in real-world applications
 - Reduce the saved amount of VNC snapshot file further
Q&A

ACT lab, Beihang University
{cuilei, libo, zhangyy, lijx}@act.buaa.edu.cn