Triton: A Software-Reconfigurable Federated Avionics Testbed

Sam Crow, Brown Farinholt, Stefan Savage, Aaron Schulman, Alex C. Snoeren UC San Diego

Analyzing the security of aircraft systems

What happens if an attacker compromises an airplane's electronics?

- Can it make the airplane operate in an unsafe manner?
- Can it make the pilots think an unsafe condition is safe?

We need to attack a genuine airplane to answer these questions

- Attacks in simulation or theory are difficult to believe
- Testing on an airplane is impractical

We created a testbed to analyze the security of aircraft

Real aircraft systems

Pilots

ACARS messages

Airborne Data Loader (ADL)

- Connects to all other computers
- Loads software/data updates
- Security: Malicious software

- For ACARS: Air-ground text communication
- Converts radio↔text
- Security: Entry point, accepts all messages

Software and

The CMU is the heart

The CMU is the heart

More computers

How to make a testbench

How to make a testbench

How to make a testbench

Connections: ARINC 429

Simulated/emulated

How it looks

~16 cm

Experiments: Software update

Attack vector: ACARS

Experiments: ACARS

Conclusion

- Triton: Runs real computers, simulates an airplane on a workbench
- Use to test security
- Next steps: Flight Control Computer

