
0

DEW: Distributed Experiment Workflows

Jelena Mirkovic, Genevieve Bartlett and Jim Blythe
{mirkovic, bartlett, blythe}@isi.edu

USC Information Sciences Institute

1

Testbed Evaluation What we think we do

• Vital for testing security
solutions

• Testbed evaluation
requires structured,
rigorous and robust
hypothesis testing

• Peer review:
Communicate what/how

2

But, Sometimes More Art Than Science
What we think we do

What we actually do

3

Noble Goals in Testbed Experimentation
What we think we doWhat we actually do

More:
• Automation
• Proactive error

detection

Less:
• Tedious +

Manual
• Error prone

4

Noble Goals in Testbed Experimentation

• Better artifact and documentation creation
• Repeatability and Reuse (needs portability)
• Proactively identify and address errors

What we think we doWhat we actually do

5

Why are we not there yet? What we think we do

6

Why are we not there yet? What we think we do

• Experiment representations are lacking
– Currently focus on topological structure and resources
– Need standardized way to encode behavior

7

Why are we not there yet? What we think we do

• Experiment representations are lacking
– Currently focus on topological structure and resources
– Need standardized way to encode behavior

• DEW: A way to represent experiments

8

Overview
• Distributed Experiment Workflows: DEW
• Automation through DEW
• Building with and on prior work
• UI/Demo

9

Overview
• Distributed Experiment Workflows: DEW
• Automation through DEW
• Building with and on prior work
• UI/Demo

10

Distributed Experiment Workflows

• Captures Full Experiment Description by drawing out only what
matters

• behavior + resources/topology = experiment
• Strong separation between the behavior, the tools that enact that

behavior and the topology the behavior is enacted on

11

Full Experiment Description
• Works like a playscript:
– Scenario: The “What and who” (actions in an experiment, and the actors

involved)
– Bindings: The “How” (the tools, orchestration and configurations needed

to carry out the what)
– Constraints: The “Where” (such as on hardware x, os y, linked with at

least bandwidth x)

12

Full Experiment Description
• Works like a playscript:
– Scenario: The “What and who” (actions in an experiment, and the actors

involved)

– Bindings: The “How” (the tools, orchestration and configurations needed
to carry out the what)

– Constraints: The “Where” (such as on hardware x, os y, linked with at
least bandwidth x)

Scenario
(actors +
actions)

Bindings
(tools)

Behavior

+ Constraints

Appropriate
Testbed

Topology and
Resources

13

Gist of a DEW Statement
• General: <Trigger(s)> <Actor(s)> <action(s)><signals>
• Examples:
– Attacker startAttack
– WHEN startWebserver WAIT t0 Attacker startAttack EMIT attackStarted

• Note: Actors != individual resources
– E.g. An “attacker” role may be spread across multiple physical nodes
– E.g. Multiple nodes acting in the same “client” role

14

DEW Goals
• High-level representation
• Generic language
• Self-contained representation
• Decouple behavior from topology and resources
• Structured representation

15

High-level Representation
• Human-readable (no, really…)
• Quick glance should tell you what the experiment does
• Enables humans to sort out what is interesting, useful and reusable

16

Generic Language
• Support a diverse range of experiments
• Focus now on cybersecurity and human modeling, but goal is to be

broadly applicable

17

Self-contained Representation +
Decouple Behavior
• Capture enough details to support automatic generation

of experiment pieces for a range of testbeds
• Decouple topological structure and resources enables

easy scaling and portability

18

Structured Representation
• Focus on the high-level first
– Match natural flow for humans in understanding or describing a process

• Focus on only the important details
– Constraints emphasize the most salient details in reconstructing the

underlying resources for an experiment

19

Overview
• Distributed Experiment Workflows: DEW
• Automation through DEW
• Building with and on prior work
• UI/Demo

20

Automation
• Generate -

DEW -> experiment
– Scripted tools (including

orchestration tools)
– Topology descriptions

• Translate –
experiment -> DEW
(reverse process)

goal

scenario
(what)

bindings
(how)

constraints
(where)

DEW

scripts

topology
tra

ns
la
to
rs

generators

21

Generators
• May not produce fully featured scripts, but:
– Provide structure for common variables for configuring and tuning
– Structure for varying independent variables and producing runs of results
– Offers point to decouple orchestration from other experiment tooling,

enabling different orchestration to be inserted for different environments

22

Translators
• Work with how users work currently
• Benefit: potential eventual adoption, but if not, helps the

experiment be sharable/portable
• Challenge: capture manual input in a meaningful way
– Identify and prune paths of unproductive/undone input
– Identify and capture varying independent variables

23

Overview
• Distributed Experiment Workflows: DEW
• Automation through DEW
• Building with and on prior work
• UI/Demo

24

Standing on the Shoulders
• Let’s not insist on “stepping on the toes of those who came before

us instead of climbing on their shoulders” – Dan Ingalls

25

Standing on the Shoulders
• Many inspiring works:
– NS-based Experimentation Workbench (Eide et al.)
– GPLMT (XML-based)
– Grid computing workflows

• DEW
– Higher-level language (much shorter descriptions)
– Stronger abstraction from topology/resources
– Translators/Generators enable building with and on other workflow tools

26

Overview
• Distributed Experiment Workflows: DEW
• Automation through DEW
• Building with and on prior work
• UI/Demo

27

Prototype UI: Key Features
• Assisted text UI
– Suggestions to help with DEW syntax

• Natural Language Processing
– NLP->DEW
– Challenging, but a first stab at living the dream

• DAG-based representation of event dependencies
• Topology depiction based on constraints
– past experiences with DETER indicate users under-

constrain, DEW fills in some guesses

28

Quick Demo: Set up
• Test of DoS defense deployed at a firewall
• Actors: webserver, firewall, attacker
• After the webserver is up and serving content, the attacker will

begin an attack. Then the firewall will deploy defenses.
• In DEW:

+ tool bindings + some constraints

29

Quick Demo

30

Call to Action

• Help us develop DEW

– Can you describe your experiment in DEW?

– What’s missing in DEW? What worked?

– UI can help you play with the language

• Thanks:

– Jelena Mirkovic, Genevieve Bartlett, Jim Blythe

{mirkovic, bartlett, blythe}@isi.edu

– Github: https://github.com/gbartlet/DEW

