

Pains, Gains and PLCs

Utz Roedig David Hutchison

Awais Rashid

Ten Lessons from Building an Industrial Control Systems Testbed for Security Research

Ben Green Anhtuan Le Rob Antrobus

Testbeds

Enterprise Zone	Enterprise Network	Level 5
	Site Business Planning and Logistics Network	Level 4
Demilitarized Zone		
Manufacturing Zone	Site Manufacturing Operations and Control	Level 3
Cell/Area Zone	Area Supervisory Control	Level 2
	Basic Control	Level 1
	Process	Level 0
Safety Zone	Safety-Critical	

Lesson 1: Device and technology selections should be market-driven

Lesson 2: Homogeneity and heterogeneity in field sites

Lesson 3: Process diversity is not always crucial

Lesson 4: Hardware-in-the-Loop (HIL) is not essential in the Manufacturing Zone

Lack of exact mathematical models for

representing the behaviours of sensors and actuators factors impacting simulation accuracy such as noise

Process diversity not a primary concern

hot-swap capability allows for a level of scalability with sensors and actuators, moving them between devices as and when required

Lesson 5: Simulations in the Manufacturing Zone are not favoured

Software does not provide simulations of many essential types of devices

from different vendors

OR

same vendor but distinctive versions

Accuracy and reliability issues in mimicking reallife operations

Despite cost, physical equipment helps experimental rigour

Lesson 6: Virtualisation and VLANs provide ease of integration and scaling

Provide an easy and cost-effective way

To integrate new systems

OR

Scale up existing instances

Reduces technical knowledge required during experimental set up

Clean backups of known good systems should damage be caused during experimentation

Lesson 7: Employ a Management Network

Reduces the need for pre-requisite knowledge

Relies on all relevant research tools being in place *Currently being addressed*

Requires appropriate data capture points

Capture traffic from all zones into a centralised location *Currently being addressed*

Lesson 8: Setup Multiple Manufacturing Zones

Lesson 9: Comprehensively document as you build

Document

Communication and control processes Known vulnerabilities in devices and software Sample attack scenarios

Keeping documentation up-to-date is significant effort!

Lesson 10: Optimise data logging for security purposes

Contributing to open ICS datasets

Collection and distribution of data is limited Involves a manual and time consuming process One for the future!

Experimentation using the testbed

- William Jardine, Sylvain Frey, Ben Green, and Awais Rashid. "SENAMI: Selective Non- Invasive Active Monitoring for ICS Intrusion Detection". In: *Proceedings of the Second ACM Workshop on Cyber-Physical Systems-Security*, Vienna, Austria. ACM, 2016, pp. 23–34.
- Rob Antrobus, Sylvain Frey, Benjamin Green, and Awais Rashid.
 "SimaticScan: towards a specialised vulnerability scanner for industrial control systems". In: *Proceedings 4th International Symposium for ICS and SCADA Cyber Security Research*. BCS, June 2016, pp. 11–18.
- Benjamin Green, Marina Krotofil, and David Hutchison. "Achieving ICS resilience and security through granular data flow management". In *Proc.* 2nd ACM Workshop on Cyber-Physical Systems Security & Privacy, Vienna, Austria pages 93–101. ACM, 2016.
- Jeremy Simon Busby, Benjamin Green, and David Hutchison. "Analysis of Affordance, Time, and Adaptation in the Assessment of Industrial Control System Cybersecurity Risk". *Risk Analysis*, 2017.

