Malicious Browser Extensions at Scale

Bridging the Observability Gap between Web Site and Browser

Louis F. DeKoven¹, Stefan Savage¹, Geoffery M. Voelker¹, Nektarios Leontiadis²

¹UC San Diego, ²Facebook

Attacks on Social Media

- Social media is targeted by malware
 - Reach a large number of users quickly
 - Users inherently trust content within a social network

Attacks on Social Media

- Social media is targeted by malware
 - Reach a large number of users quickly
 - Users inherently trust content within a social network
- Malware infects user's browser then
 - Infect other social media users
 - Steal the user's passwords

Attacks on Social Media

- Social media is targeted by malware
 - · Reach a large number of users quickly
 - Users inherently trust content within a social network
- Malware infects user's browser then
 - Infect other social media users
 - Steal the user's passwords
- Leverage the vantage point of a social network to
 - Detect devices infected with malware
 - Clean up malware from infected devices

Objectives

- Detect and label malicious browser extensions quickly
 - Google Chrome
 - Mozilla Firefox
- Automatically cleanup infected devices
- Detect new malicious browser extensions automatically

Objectives

- Detect and label malicious browser extensions quickly
 - Google Chrome
 - Mozilla Firefox
- Automatically cleanup infected devices
- Detect new malicious browser extensions automatically

Malicious Browser Extensions (MBE): extensions that take actions on behalf of a user without their consent, or replace Facebook's key functionality or content.

- >Motivation
- >Background
- > Methodology
- >Results
- > Evaluating Alternatives
- >Conclusion

- Enhance user experience beyond a Web page
- Can change visual appearance of Web pages
- Can change how the browser interacts with Web pages

- Enhance user experience beyond a Web page
- Can change visual appearance of Web pages
- Can change how the browser interacts with Web pages

No extension

Extension

- Enhance user experience beyond a Web page
- Can change visual appearance of Web pages
- Can change how the browser interacts with Web pages
- How?
 - Have elevated set of privileges

- Enhance user experience beyond a Web page
- Can change visual appearance of Web pages
- Can change how the browser interacts with Web pages
- How?
 - Have elevated set of privileges
 - Modify HTTP headers
 - Change Content Security Policy
 - Rewrite any Web site content

- Example MBE targeting Facebook
 - Steals user's Facebook access token
 - Generates likes
 - Subscribes to YouTube channels
 - And more...

Defending Against MBE

- Harden the browser [1,2,3]
- Detecting extensions vulnerable to Web page JavaScript[4]
- Vetting code within extension marketplaces [5]
- Dynamic analysis and sandboxing [6,7]

- [1] V. Djeric and A. Goel. Securing Script-Based Extensibility in Web Browsers. In *Proc. of USENIX Security*, 2010.
- [2] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified Security for Browser Extensions. In *Proc. of IEEE S&P*, 2011.
- [3] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome Extensions: Threat Analysis and Countermeasures. In *Proc. of NDSS*, 2012.
- [4] M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan. Enhancing web browser security against malware extensions. Journal in Computer Virology, 2008.
- [5] H. Shahriar, K. Weldemariam, T. Lutellier, and M. Zulkernine. A Model-Based Detection of Vulnerable and Malicious Browser Extensions. In Proc. of SERE, 2013.
- [5] S. Bandhakavi, S. T. King, M. Parthasarathy, and M. Winslett. Vetting Browser Extensions for Security Vulnerabilities with VEX. In Proc. of USENIX Security, 2010.
- [6] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. Hulk: Eliciting Malicious Behavior in Browser Extensions. In Proc. of USENIX Security, 2014.
- [7] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and K. Thomas. Trends and Lessons from Three Years Fighting Malicious Extensions. In *Proc. of USENIX Security*, 2015.

It's Hard to Detect MBE

- Anti-malware products
 - May run static analysis on extension JavaScript
 - Struggle with dynamic resources
- Extension marketplaces/Browser vendors
 - May track how extensions use the browser
 - Struggle with temporal badness
- Researchers
 - May run sandboxed analysis
 - Struggle with scale and temporal badness

A Different Perspective

Detecting MBE

- >Motivation
- >Background
- >Methodology
- >Results
- > Evaluating Alternatives
- >Conclusion

- How do we know what extensions are bad?
 - Facebook has to build signatures to detect MBE

- How do we know what extensions are bad?
 - Facebook has to build signatures to detect MBE
- Facebook does not know what extensions are installed
 - Can detect user accounts acting in abusive ways

- How do we know what extensions are bad?
 - Facebook has to build signatures to detect MBE
- Facebook does not know what extensions are installed
 - Can detect user accounts acting in abusive ways
- Facebook can not collect extensions from facebook.com due to browser security
 - Can build a binary to collect installed extensions

- How do we know what extensions are bad?
 - Facebook has to build signatures to detect MBE
- Facebook does not know what extensions are installed
 - Can detect user accounts acting in abusive ways
- Facebook can not collect extensions from facebook.com due to browser security
 - Can build a binary to collect installed extensions
- Insight: We can link extension content to abusive content

System Methodology

Using signals from malware within Facebook enables the detection and remove MBE at a large scale

We do this by:

- Identifying compromised Facebook accounts
- With user consent, we fetch the installed extensions from devices exhibiting malicious behavior
- Determine if the extension is malicious or benign by comparing it to abusive content (while fetching extensions)
- If the extension is malicious remove it from the user's device

System Design

 Detecting compromised user accounts

Detecting Compromised User Accounts

- Spiking content
 - Monitor time series of user activity

Detecting Compromised User Accounts

- Spiking content
 - Monitor time series of user activity
- Document Object Model (DOM) based detection
 - Periodically scan Facebook's DOM for third-party elements

Example DOM

Detecting Compromised User Accounts

- Spiking content
 - Monitor time series of user activity
- Document Object Model (DOM) based detection
 - Periodically scan Facebook's DOM for third-party elements
- Negative feedback
 - Feedback on posted content

System Design

- Detecting compromised user accounts
- Anti-malware scanner

Anti-Malware Scanner

• Facebook's custom scanner is executed on the compromised device following user consent

Anti-Malware Scanner

• Facebook's custom scanner is executed on the compromised device following user consent

- Uploads digital fingerprint of extensions to Facebook
 - MD5 hash
- New extensions are uploaded to Facebook
- When MBE are detected they are removed
- Third-party anti-virus scanner executed

System Design

- Detecting compromised user accounts
- Anti-malware scanner
- Static analysis pipeline

Static Analysis Pipeline

- Unpacking
 - Recursively unpack the extension and files
- Indicator extraction
 - Deobfuscate, decode, and repair broken URLs
 - · Regular expressions extract indicators e.g. URLs, API keys
 - Treating each file as text
- Insight: Extensions collected by Facebook's malware scanner exhibited malicious behavior at the time of collection

System Design

- Detecting compromised user accounts
- Anti-malware scanner
- Static analysis pipeline
- Extension labeling

Indicator Labeling

- MALICIOUS
 - Malicious with high-confidence
- UNKNOWN
 - Default label for all samples
- NON MALICIOUS
 - · Benign samples, or samples from trusted sources
- Labels produced by system that detects compromised accounts

Propagating Indicator Labels

- Apply vetted threat labels to indicators from static analysis
- How do we label extensions?
 - JavaScript contains a MALICIOUS URL
 - MALICIOUS label propagates to the file
 - MALICIOUS label propagates the extension
- Erroneously marked indicators
 - Propagate automatically
 - Rules in place to prevent single indicators from mass-labeling
 - Manual labels overrides automated labeling

System Results

- >Motivation
- >Background
- >Methodology
- >Results
- > Evaluating Alternatives
- >Conclusion

Malicious Indicators

	Extension Contents		Extracted Indicators		Scan Sessions	
	JS	HTML	Total#	Malicious (#%)	#	%
Chrome Ext.	67 380	720	66 134	1 559 (2.4%)	$718\ 497$	96.9
Firefox Ext.	17 979	16	19 004	609 (3.2%)	$257\ 164$	34.7
Total Unique	84 905	733	$73\ 281$	1 516 (2.1%)	$741\ 276$	100.0

- 6-week measurement period
- Only a small number of all indicators are labeled MALICIOUS

Malicious Extensions

	All Extensions		Malicious Extensions	
	#	%	#	% of total
Chrome Ext.	$23\ 376$	67.6	1 697	7.3
Firefox Ext.	11 183	32.4	88	0.8
Total Unique	$34\ 559$	100.0	1 785	5.2

- A high proportion (5.2%) of malicious extensions is expected as our system targets devices exhibiting malicious behavior
- 422 of 1,697 Chrome MBE were once online Google's Web Store
 - Suggests a high number of MBEs to be side loaded

MBE Detection Rates

- Average 39.5 Chrome MBE/day
- Average 2 Firefox MBE/day

- 92% of new MBE are labeled by a median time of **21 seconds**
- 8% of new MBE are labeled more than one day after collection
 - Detected on 9% of user devices cleaned during the experiment

This result is expected from an indicator-based labeling system as labels can change over time

Known False Positives

- 124 extensions are incorrectly labeled MALICIOUS
- 0.8% of all scan sessions removed one or more of these extensions
- Median detection time: 18 days

- This result is expected from an indicator-based labeling system as labels can change over time
- We find the low number of incorrectly labeled MBEs to be an acceptable tradeoff

Comparing Systems

- >Motivation
- >Background
- >Methodology
- >Results
- > Evaluating Alternatives
- >Conclusion

Evaluating Alternatives

- Was it necessary to create a new system that detects MBE?
- Focus on Chrome extensions
 - Majority of extensions are for Chrome browser
 - Each Chrome extension's Web store presence is checked
 - 2,200/23,376 Chrome extensions *once* on the Chrome Web store
- Facebook labels 422 (19.2%) MALICIOUS
- Facebook labels 1,778 (80.8%) UNKNOWN

VirusTotal

- Provided with 9,172 unique CRX from authors of Hulk[1]
 - VT was aware of *only* 73 extensions
 - Moreover 5 are labeled MALICIOUS by at least 1 anti-virus engine

Facebook cannot use general malware databases to detect MBEs

VirusTotal

- Provided with 9,172 unique CRX from authors of Hulk[1]
 - VT was aware of only 73 extensions
 - Moreover 5 are labeled MALICIOUS by at least 1 anti-virus engine

Facebook cannot use general malware databases to detect MBEs

- Of the 422 MBE identified by Facebook
 - 96 (22.7%) are labeled MALICIOUS by one or more anti-virus engine

Facebook cannot rely on anti-malware engines to identify MBEs

Google Chrome Web Store

- By the six-week period Google removed 367 of the 2,200
 - 70 MALICIOUS
 - 297 UNKNOWN

Facebook cannot rely on Google to remove all MBE targeting FB

- Does Facebook identify MBEs faster?
 - These 70 MBE have over 1 million installs according the the Web Store
 - Facebook identifies the 70 MBE with a median time of **2.8 days** (67.3 hours) before they are removed from the Web store

Our system successfully reduces the median monetization time of MBE

Take Away

MBE are challenging to address from any single vantage point

- Browser vendors
 - Can restrict extension distribution
 - Have limited insight into abusive extensions in the wild
- Abused sites
 - Directly experience malicious behavior
 - But are not in a position to identify which extensions are implicated

Conclusion

- This system is currently running to protect users of Facebook
- As a result Facebook is able to very quickly detect and remove new MBE at scale

422 Chrome MBE MD5 hashes: https://pastebin.com/nzVGPLnr

• Samples available in VirusTotal and Facebook ThreatExchange