DACSA: A Decoupled Architecture for Cloud Security Analysis

Jason Gionta, William Enck, Peng Ning – NC State
Ahmed Azab – Samsung Ltd
Xialoan Zhang – Google Inc
Cloud Provider Landscape

- Netflix
- Amazon Web Services
- Windows Azure
- Rackspace
- Salesforce
- Google App Engine
- Zillow
- PayPal
Cloud Provider Landscape

- Degrade
- Steal
- Infect

Amazon Web Services

Netflix

Zillow

PayPal

The New York Times
Cloud Provider Landscape

How to ask security centric questions?
Unique Features of Cloud

- Diverse Components and Applications
- Single Platform Owner
- Geographically Dispersed
Cloud Infrastructure as a Security Testbed

Security Attributes

Virtual Infrastructure

Application
Operating System
Virtual Machine

Application
Operating System
Virtual Machine

Application
Operating System
Virtual Machine

STORAGE
NETWORK
SERVERS
STORAGE
How to Create a Datasource?

- **Network Monitoring**
 - Flow analysis
 - Encrypted network data

- **In-Guest VM Monitoring**
 - Virus Scanners / Security Software
 - Application Firewalls
 - Resource Intensive
 - Software Management

- **Host Based “Out of VM” Monitoring**
 - Peer into VM - VMWatcher
 - Record and Replay - Revirt
 - Scalability
How to Create a Datasource?

- **Network Monitoring**
 - Flow analysis
 - Encrypted network data

- **In-Guest Monitoring**
 - Virus Scanners / Security Software
 - Application Firewalls
 - Resource Intensive Software Management

- **Host Based “Out of VM” Monitoring**
 - Peer into VM - VMWatcher
 - Record and Replay - Revirt
 - Scalability

 Decouple analysis from attribute acquisition
Decoupled Architecture for Analysis

Sensor Sensor Sensor

Virtual Infrastructure

Security Attributes

STORAGE NETWORK SERVERS STORAGE
DACSA Components
DACSA Goals

• Limit impact to client VMs and hosts
 – Enable analysis on supporting infrastructure
• Transparent to clients
• Test for security violations
 – ToS
 – Bots/C&C
 – Malicious software development
Context Acquisition

• Fast Memory Snapshots
 – Logical memory copy of guest memory
 • COW
 – Limit impact to guest and host

• Reliable copies
 – Pause guest
 – Flush Asynchronous I/O
Carving Memory

• Apply memory forensic techniques
 – Extract security centric information
 • Open ports, registry keys, processes, API hooks
 • Hashes of executable pages

• Forensic tools
 – Volatility

• Work directly on memory
 – Interpose file I/O
Analysis

• Clustering of system features
 – Blacksheep – Bianchi et al.

• Memory based virus scanning
 – Memory only malware

• Security Audit
 – PCI Requirements
Implementation

- Host – Ubuntu 12.04 64-bit
- Guests – Windows 7 SP1 64-bit
- KVM/QEMU
 - Fork QEMU process
- Shared library for interposing File I/O
 - Volatility
 - Custom tool for parsing memory
 - Window 7 GS register to walk internal data structures
- Analysis
 - Scan viruses in memory
Evaluation

• Platform
 – IBM System X server Xeon E5450 Quad-core
 – Guests 1GB Ram

• Impact to Guest

• Impact to Host

• Correctly identify infected processes
Impact to Guest

- 1-15 VMs, snapshot VMs, carve process list
- Pause time
 - Flush Async I/O, Fork QEMU Process, Resume VM
 - ~0.2112 seconds / standard deviation 0.07359 sec
- Reduction in system performance
 - Run Novabench in snapshotted VM
 - Measure CPU Ops/Sec and Memory Ops/Sec
 - 0-6% CPU, 0-3% Memory
Impact to Host

- 1-15 VMs, snapshot VMs, carve process list
- Increased CPU and Memory Utilization
 - ~3% CPU
 - Negligible Memory overhead
- Write Working Set
 - 100-300 MB per minute
Carving Process Memory

- Infected VM with Cerberus RAT
 - iexplore.exe host process
- Carved process memory
- Scanned memory with ClamAV
- Identified infected process
Related Work

• Live VM Migration (Clark et al.)
 – Migrations takes upwards of 90 seconds
 – Performance degradation upto 20%

• Fast VM Cloning (Sun et al.)
 – COW based by write protecting pages
 – Technical challenges of cloning
Conclusion

• DACSA turns clouds into a platform for security analysis
 – VMs lightweight sensors
 – Minimal impact to VM and host operations
• Apply large scale analysis
• Future Work
 – Deploy to Virtual Computing Lab at NC State
 – Memory Scanning as a Service
Questions?

• Thanks
 – Reviewers insightful comments
 – Eric Eide for shepherding

jjgionta@ncsu.edu