Body Area Network Security: Robust Secret Sharing

Sang-Yoon Chang, Yih-Chun Hu, Hans Anderson, Ting Fu, Evelyn Huang

University of Illinois
Body Area Network Background

- Body area network (BAN) consists of nodes *physically touching* the human body (either worn or implanted)
- Sensor nodes monitor the state of the human body, usually for health reasons
- Nodes want to talk to each other
WIRELESS IMPLANTABLE MEDICAL DEVICES

Deep Brain Neurostimulators

Cochlear Implants

Gastric Stimulators

Cardiac Defibrillators/Pacemakers

Foot Drop Implants

Insulin Pumps

From: http://groups.csail.mit.edu/netmit/IMDSHield/
Motivation for Our Work

- Wireless connectivity introduces vulnerabilities
- Halperin et al.* demonstrate successful eavesdropping and impersonation attacks
- We achieve security against outsiders
- A network must share a secret to give the network an advantage over outsiders

State-of-the-Art

- Secret sharing using body physiological value
 - Use the randomness of physiological value to share secret
- Physiological state can be modeled as a time-varying signal generated by a random process
 - The history of such states derive secret
 (Attacker may know the statistics of the random process but not the exact history)
Related Work

- Prior researchers propose using electrocardiogram (ECG) to share a secret
 - Venkatasubramanian, et al., “EKG-based key agreement in body sensor networks,” IEEE Infocom 2008
 - Etc.

- They generally assume ideal ECG measurement, using hospital-provided data
Our Contribution

We investigate the feasibility of the current literature, propose a novel scheme, study human body channel, and demonstrate the practicality of our scheme.

We conduct four experiments:

- **ECG Experiment**: to investigate the practicality of current literature by studying the physiological value measurements.
- **Mouse Experiment**: to build our scheme and derive preliminary results about human body channel.
- **Homogeneous Tissue Experiment**: to devise a channel amplitude model using empirical data.
- **Noise Measurement**: to study channel noise on living human body.
ECG Experiment

- Correlation coefficient (ρ) for a quantitative measurement of similarity between ideal (I) and other locations
- The measurements are sensitive to electrode orientation; we only show the maximum correlation (the minimum is 0)
- Time synchronization is crucial; readings not aligned in time but otherwise identical yield low correlation ($\rho=0.0394$)
- Designated target sensor locations that emulate popular BAN use (see diagram on the right)
ECG Experiment Result

<table>
<thead>
<tr>
<th>Distance</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.9139</td>
</tr>
<tr>
<td>5</td>
<td>0.8473</td>
</tr>
<tr>
<td>1</td>
<td>0.7709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.7436</td>
</tr>
<tr>
<td>1</td>
<td>0.6677</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.3442</td>
</tr>
<tr>
<td>5</td>
<td>0.3047</td>
</tr>
<tr>
<td>1</td>
<td>0.1003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.0992</td>
</tr>
<tr>
<td>5</td>
<td>0.0371</td>
</tr>
<tr>
<td>1</td>
<td>0.0155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.0782</td>
</tr>
<tr>
<td>5</td>
<td>0.0362</td>
</tr>
<tr>
<td>1</td>
<td>0.0123</td>
</tr>
</tbody>
</table>

(Distance in cm)
Threat

- Physiological value measurements are not robust to the sensor deployment location.
- Outsiders can use other technology to remotely measure ECG and compromise physiological value-based secret sharing.
Our Countermeasure

- Our scheme replaces the body physiological values with an artificial electrical signal.
- Our electrical signal operates below the action potential level of human body (and thus does not cause change in body physiological state).
- Our scheme is based on body-coupled communication with galvanic coupling.

< Images from Wegmueller et al., 2006 (left) and Baldus et al., 2009 (right) >
Mouse Experiment
Building Our Scheme

- Source transmits 2Hz rectangular pulse amplitude modulated signal with non-return-to-zero, and receiver uses maximum-likelihood threshold-based decision

- Successful bit transfer
 - 0% at every region except for Ankle (A) region
 - A region showed mean error rate of 0.16%

The mouse is dead (noise is much less than living medium)
Heterogeneous Tissue Channel

- Tissue channel phase measurement
 - Transient state lasts up to 200ms
 - Data rate/bandwidth is limited to 5Hz
- Tissue channel amplitude measurement on the right picture
- However, human is bigger than mouse

<table>
<thead>
<tr>
<th></th>
<th>V_{pp}(1.5)</th>
<th>V_{pp}(2)</th>
<th>V_{pp}(4)</th>
<th>V_{pp}(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>0.094</td>
<td>0.008</td>
<td>0.010</td>
<td>0.006</td>
</tr>
<tr>
<td>Obese</td>
<td>0.072</td>
<td>0.005</td>
<td>0.008</td>
<td></td>
</tr>
</tbody>
</table>

Normalized peak-to-peak received voltage magnitude
Human Body Channel Model

- Additive noise channel model

\[S' = h \cdot S + n \]

\(S \) is the transmitted signal,
\(S' \) is the distorted and received signal,
\(h \) is channel amplitude,
\(n \) is noise

Path loss model for channel amplitude

\[h(d) = \alpha \cdot d^{-\gamma}, \]

where \(d \) is distance and \(\alpha, \gamma \) some constants
Body Channel Amplitude

Using dry pork loin meat
Channel Amplitude Response h

- We validate our path loss model from *homogeneous meat experiment* with data acquired from mouse experiment

- $h = 2.1 \cdot 10^{-4} \: d^{-0.5562}$

- $h_{\text{lower bound}} = 8.9582 \cdot 10^{-4} \: d^{-0.5562}$

- Conservative amplitude response because signals travel through a longer path in human than mouse (and by law of large numbers)
Noise Variance (σ^2) Measurement

σ^2 at different points:
- $\sigma^2 = 124.3$ at N
- $\sigma^2 = 142.4$ at W
- $\sigma^2 = 358.3$ at P
- $\sigma^2 = 239.5$ at $M1$
- $\sigma^2 = 35.74$ at A
- $\sigma^2 = 116.6$ at $M2$

(σ^2 in μV^2)
Analysis of Our Scheme

- Our channel model (not the dead mouse) is used to analyze the performance of our scheme.
- To provide a simple numerical value, we use Shannon capacity while assuming Gaussian noise.
- Source transmitter is located on the torso region above the belly button, effectively giving maximum distance of 100 cm to reach anywhere in most human body.
- Worst-case capacity because we use $h_{\text{lower bound}}$.
Capacity of Our Scheme

(d in cm, SNR in dB, R in bits per hour)
Application to Body Area Network

- Shannon capacity over 11 bits per day
- BAN applications being characterized by high-risk, low-occurrence events make the very low performance tolerable
- Secret updates are necessary when there is a change in infrastructure, e.g., node misbehaving and needs replacement
- Our scheme requires minimal hardware and is power-efficient, making it suitable for BAN applications
Conclusion

- Investigated state-of-the-art technology for secret sharing
- Realized the necessity to have more understanding about the human body channel
- Measured that channel using empirical data
- Proposed our scheme that does not leak information, demonstrated its feasibility, and analyzed the performance on a practical setting
Thank you

Questions?