Chimera
A Declarative Language for Streaming Network Traffic Analysis

Kevin Borders*, Jonathan Springer†, Matthew Burnside*
*National Security Agency, †Reservoir Labs
Motivation

Pattern-Based Signatures

/^[^evil]$\/

Behavioral Analytics

Session Cookie from > 1 Client IP/User-Agent

(“side-jacking”)
Problem:
Semantic Gap

Session Cookie from > 1 Client IP/User-Agent

~50 lines of code

```c
event http_all_headers(c: connection, is_orig: bool, hlist:mime_header_list)
{
  if (!is_orig)
    return;
  if (!c$http$cookie || c$http$cookie == "")
    return;
  local cookie = "";
  local service = c$http$host;
  ...
```

~50 more lines of code
Chimera Goals

1. Concise
2. Declarative
3. Interoperable
4. Efficient

Start From SQL
Beyond SQL: Structured Data (Lists and Maps)

• **SPLIT Operator**
 – One row for each item

• **Iteration + First class functions, e.g.:**
 – `<list>.foreach{<expr>}`
 • Replace each item with `<expr>`
 – `<list>.find{<expr>}`
 • Return first item where `<expr> == true`
Beyond SQL: Dynamic Window Boundaries

- **Steaming SQL:**
 - `FROM x RANGE 60 MINUTES, SLIDE 1 MINUTE`

- **Chimera:**
 - `GROUP BY ... UNTIL <expr>`
 - `FROM <a> JOIN ... WINDOW <expr>`

+ Increased flexibility
+ Immediate results
Chimera in Action
Scenario 1: Side-jacking

Description
• Session ID in HTTP ‘Cookie’ header used by more than one IP/User-Agent client

Chimera Query
```
SELECT list_agg(distinct(concat(
    [packets].[srcip], ':',
    [headers].[User-Agent])))
  AS clientlist
 FROM http
WHERE [sessionid] != NULL
GROUP BY [sessionid]
UNTIL [clientlist].size() > 1
```
Chimera in Action
Scenario 2: DNS TTL Value Changes

Description

- Count the number of changes in DNS TTL value per domain per day

(From EXPOSURE paper)

Chimera Query

```sql
SELECT count(), [name]
FROM (
    SELECT [name]
    FROM dns_rr
    WHERE [ttl] != NULL
    GROUP BY [name]
    UNTIL
        last([ttl]) != last([ttl], 2, true) &&
        last([ttl], 2, true) != NULL
)
GROUP BY [name]
UNTIL GLOBAL nextwindow(
    [packets].[time], 86400)
```
Chimera in Action
Scenario 3: DNS Tunnel Detection

Description
• Count DNS A-record replies
• Where no client connects to the A-record IP
• Aggregate by DNS client IP
• Thresholds:
 – 100 replies
 – Unanswered for 5 minutes
 – In < 1 Hour

Chimera Query
```
SELECT
  [dns].[packets].[dstip] AS client,
  first([dns].[packets].[time]) AS start
  last([dns].[packets].[time]) AS end,
FROM dns EXCLUSIVE LEFT SINGLE JOIN
  ip_packet
ON [answers].[aip] EQUALS [dstip]
WINDOW [new].[packets].[time] - [old].[packets].[time] < 300
WHERE [dns].[answers].[aip] != NULL
GROUP BY [client]
UNTIL count() > 100
HAVING [end] - [start] < 3600
```
The Compiler

Chimera Language

1. Parsing

Abstract Syntax Tree

2. Translation

Chimera Core (Rel. Algebra)

3. Code Generation

Bro Event Code
Chimera Query

SOURCE STDIN
SELECT avg([b].[z])
 AS avgz
FROM dns AS a
JOIN
 smtp AS b
 ON [x] EQ [y]
WHERE [a].[x] > 5
GROUP BY [a].[x]
UNTIL avgz > 3
INTO STDOUT

Data Flow Graph

source(STDIN)
parser(dns)
rename(a)
join(a, b, [x], [y], true, INNER, 0)
selection([a].[x] > 5)
group([a].[x], avgz > 3, none, 0, avg([b].[z]), avgz)
projection(avgz, none)
output(STDOUT)
Code Generation

Chimera Query

```
SELECT [path]
FROM http-request
WHERE [method] == "GET"
```

Data-flow Graph

1: source((STDIN))
2: parser(http-request)
3: selection([method] == "GET")
4: projection([path], none)
5: output()

Type Definitions

```
@http-reply
type 11_type:
  record {
    method: string;
    path: string;
    headers: listmap;
    body: string;
    packetlist:
      packetlist_type;
  }

type 13_type: record {
  v1: string;
}
```

Event Handlers

```
# 14
event 13(t: 13_type) {
  print t$v1;
}
# 13
event 12(t: 11_type) {
  local out: 13_type;
  out$v1 = t$path;
  event 13(t);
}
# 12
event 11(t: 11_type) {
  if (! (t$method == "GET"))
    return;
  event 12(t);
}
# 11
event http_message_done(
  c: connection, ...)
  {
    local t = http_trans(c);
    event 11(t);
  }
```
Is It Fast Enough?

Type Definitions

```plaintext
@http-reply

type 11_type:
  record {
    method: string;
    path: string;
    headers: listmap;
    body: string;
    packetlist:
      packetlist_type;
  };

type 13_type: record {
  v1: string;
};
```

Event Handlers

1. No data copying
2. Inline evaluation
3. Earlier event type

Hand-Written

```plaintext
@http-reply

event http_request(
  c: connection,
  method: string,
  original_URI: string,
  unescaped_URI: string,
  version: string)
{
  if (method == "GET")
    print original_URI;
}
```
Optimization Impact

1 = No data copying, 2 = Inline evaluation, 3 = Earlier event type

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Base</th>
<th>Opt-1</th>
<th>Opt-1+2</th>
<th>Opt-1+2+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Time(s)</td>
<td>14.21</td>
<td>14.00</td>
<td>14.01</td>
<td>13.79</td>
</tr>
<tr>
<td>Std. dev (s)</td>
<td>0.084</td>
<td>0.083</td>
<td>0.074</td>
<td>0.081</td>
</tr>
<tr>
<td>Sped-up(%)</td>
<td>n/a</td>
<td>1.5%</td>
<td>1.4%</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Is there room for optimization? **Yes**

Is it significant? **Probably Not**
Real Scenarios

Chimera v. Hand-Written Script

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Chimera (s)</th>
<th>Hand-Written (s)</th>
<th>Speed-up (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidejacking (4.1)</td>
<td>15.64</td>
<td>15.48</td>
<td>1.1%</td>
</tr>
<tr>
<td>IPs/domain (4.2.1)</td>
<td>8.81</td>
<td>8.72</td>
<td>0.96%</td>
</tr>
<tr>
<td>Phishing (4.4)</td>
<td>2.77</td>
<td>2.75</td>
<td>0.79%</td>
</tr>
</tbody>
</table>

Is Chimera fast enough in real-world scenarios? **Yes**
Future Work

• Optimizations
 – Relational Algebra (extensive prior work)
 – Analysis Logic – e.g., Bloom filter for EXCLUSIVE RIGHT JOIN
 – Parallel Processing

• Additional Targets
 – IBM Streams, others?
Availability
www.chimera-query.org

Now
• Language specification
Pending Pre-Publication Review
• Source code

Logistics
• BSD-style license
• Maintained independently from Bro
• (Hopefully) Bro compiler packaged with Bro distribution in the future
Thank You!

• Questions?