Breaking Cell Phone Authentication: Vulnerabilities in AKA, IMS, and Android

Jethro G. Beekman ← Christopher Thompson

{jbeekman@eecs, cthompson@cs}.berkeley.edu
New phone, now what?

Hack it.
Outline

• Introduction
• Background
• Attack vectors
• Solutions
• Conclusion
Background

Authentication and Key Agreement
IP Multimedia Subsystem

• Introduction
• Background
• Attack vectors
• Solutions
• Conclusion
Authentication and Key Agreement \[1\]

\[\begin{align*}
\text{identity} & \quad \rightarrow \quad \text{RAND,sequence\#}, \text{MAC}_{K_1}(\text{rand,sequence\#}) \\
\text{MAC}_{K_2}(\text{RAND}) & \quad \leftarrow \\
\text{MAC}_{K_3}(\text{RAND}) & \quad \rightarrow \\
\text{CK} = \text{MAC}_{K_3}(\text{Rand}) & \quad \text{IK} = \text{MAC}_{K_4}(\text{Rand})
\end{align*}\]

\[1\] 3GPP TS 33.102
Authentication and Key Agreement[1]

\[\text{challenge} \rightarrow \text{response} \]

\[\text{CK} = \text{MAC}_{K3}(\text{RAND}) \]
\[\text{IK} = \text{MAC}_{K4}(\text{RAND}) \]

[1] 3GPP TS 33.102
IP Multimedia Subsystem

- Telephony using Internet standards
- SIP, TLS, etc.
- Digest Authentication (as in HTTP)
Digest Authentication (HTTP)

- Challenge-response protocol designed to not send HTTP passwords in the clear

```
Client                             Server

nonce

username,H(username,password,nonce)
```
Digest AKA\cite{2}

- Overload nonce as AKA “challenge”
- Overload password as AKA “response”

\[\text{identity} \xrightarrow{\text{AKA challenge}} \text{H(AKA response)} \]

\[[2] \text{RFC 3310} \]
Attack vectors

• Introduction
• Background
• Attack vectors
• Solutions
• Conclusion
The complete system

P

Wi-Fi

Android

3G

identity

challenge

response

secured w/ CK,IK

S

HN
The complete system redux
Digest AKA is not enough!

• RFC about Confidentiality and Integrity keys:

“[…] this document does not specify the use of these additional keys, they may be used for […] additional security [with some undefined] security mechanism.”

• “Additional security”? Without CK/IK, you get no security!
SIPS (TLS)

• What if channel security depends on TLS?
• Example: T-Mobile Wi-Fi Calling
 – SIP server cert chain root not standard…
 – …and not included in app → classic MITM

 – Android apps commonly flunk TLS security[3]

False base station attack

![Diagram showing the process of a false base station attack](image.png)

1. **Identity Challenge**
2. **Challenge Response**
3. **CK, IK?**
4. **H(response)**
5. Not needed!
Android SIM card interface

- \texttt{requestIsimAuthentication}
 - challenge
 - response, \(CK, IK \)
Malware attack

identity

challenge

response

identity

challenge

H(response)
Imposter attack

P → AP

C → I

BS → HN

identity

challenge

response, CK, IK

identity

challenge

response

secured w/ CK, IK

Berkeley University of California

AUGUST 13, 2013
7th USENIX WORKSHOP ON OFFENSIVE TECHNOLOGIES
READ_PHONE_STATE

Phone calls Read phone state and identity

Allows the application to access the phone features of the device. An application with this permission can determine the phone number and serial number of this phone, whether a call is active, the number that call is connected to and the like.

— ¹⁄₃ of apps request this[4]

Impact

• **Classic MITM attack**
 – T-Mobile customers with Wi-Fi Calling (before update)

• **Fake base station attack**
 – 3G/IMS providers that use AKAv1

• **Malware attack**
 – 3G/IMS providers with Android 4.0+ customers

• **Imposter attack**
 – 3G providers with Android 4.0+ customers
Solutions

• Introduction
• Background
• Attack vectors
• Solutions
• Conclusion
T-Mobile Wi-Fi Calling

(Classic MITM attack)

• TLS problems\(^5\) reported December 2012

• Fixed (OTA update) March 2013
 – Fix looks ok

[5] Beekman, Thompson, UCB/EECS-2013-18
Digest AKAv1

(False base station attack)

- Confidentiality and Integrity keys MUST be used
 - e.g. TLS renegotiation with pre-shared key
- AKAv2[6] uses CK,IK in hash
 - IMS specifies use of AKAv1[7]
 - TLS and Digest AKAv2 should suffice if server is authenticated another way
 - Does not protect against malware attacks

[6] RFC 4169
[7] 3GPP TS 33.203
requestIsimAuthentication
(Malware and Imposter attacks)

• API should not be accessible
• At least require appropriate permissions
 – e.g. “Services that cost you money”

• Reported to Google June 2013
 – Current status unknown
Conclusion

- **4 attacks**
 - 3 implementation errors
 - 1 cross-protocol issue
- **4 solutions**

• Introduction
• Background
• Attack vectors
• Solutions
• Conclusion
Breaking Cell Phone Authentication: Vulnerabilities in AKA, IMS, and Android

Jethro G. Beekman ← Christopher Thompson

{jbeekman@eecs, cthompson@cs}.berkeley.edu