Mojave: A Recommendation System for Software Upgrades

Rekha Bachwani, Olivier Crameri, Ricardo Bianchini, Willy Zwaenepoel
Motivation

- Modern software is complex; requires frequent updates
 - Fix bugs
 - Patch security vulnerabilities
- Software upgrade failures are frequent
 - 5-10% of all upgrades fail [SOSP’07]
 - 41% of bugs reported in OpenSSH due to upgrades
- Users’ environment and input cause upgrade failures
 - Application-specific configurations
 - System environment settings
Current Techniques

- Deploy upgrades as packages
 - Package management systems check for static dependencies

- Delay installation till the upgrade is “mature”
 - Wait for positive feedback from (many) other users

None of these approaches is ideal
Approach

Developer and user collaboration

- Integrate users in upgrade deployment cycle
 - Test upgrade in (many) user environments with their input

- Collect data from the (willing) users
 - Environment settings
 - Dynamic execution behavior
 - Success or failure flags

- Leverage data from many users
- Prevent failures for new users
Contributions

- **Mojave**: Recommendation system for upgrades
 - Provides accurate recommendations
 - Predicts the likelihood of an upgrade failure
 - Uses machine learning, environment & run time data
 - Evaluation with two OpenSSH upgrade failures
Outline

- Overview
- Mojave: A Recommendation System
- Evaluation
- Conclusion
Mojave - Key Idea

- Upgrades fail mostly because of users’ attributes
 - Environment settings
 - Inputs (execution behavior)
- Users similar to other users where upgrade failed
 - Likely to experience similar failures
- “Alike” before the upgrade → similar behavior after it

- Learns failure characteristics
- User similarity to predict failure likelihood
Mojave - Learning Phase

Developer

Initial Users

Upgrade

Upgrade

Upgrade
Mojave - Learning Phase

Environment data
Call sequences
Success/Failure flags

Developer

Initial Users
Mojave - Learning Phase

Developer

- Environment data
 - Call sequences
 - Success/Failure flags
- Feature Selection
- Source Analysis

Filtered call sequences and success/failure flags

Filter

Longest Common Subsequence (LCS)

90^{th} percentile length of LCS

Environment and success/failure data

Logistic Regression

FSimilarity, SSimilarity

Prediction Model

Suspect Routines

Suspect Environment Features
Mojave - Recommendation Phase

- Call sequences
- Environment data

Prediction Model
Mojave - Recommendation Phase

Developer

Call sequences
Environment data

Past users' call sequences and success/failure flags

Longest Common Subsequence (LCS)

90th percentile length of LCS

FSimilarity, SSimilarity

Prediction Model

Recommend FOR

Recommend AGAINST

New User
Summary

- Collects environment and run time data from users
- Learns user attributes correlated with the failure
 - Machine learning, call sequence similarity, and static and dynamic analyses
- Compares new user’s attributes to those of past users
 - Call sequence similarity and machine learning
- Recommends in favor or against an upgrade
Outline

- Overview
- Mojave: A Recommendation System
- Evaluation
- Conclusion
Failures – Port Forwarding

- Large data transfers abort when using port forwarding
 - Regression bug in ssh version 4.7
 - Abort not reproducible at developer site

- Abort characteristics
 - Users had port forwarding (Tunnel) enabled
 - Default window size increased from 128KB to 2MB
 - Port forwarding code advertising window size as packet size
 - sshd limits maximum packet size to 256KB
Failures – X11 Forwarding

- X forwarding won't start when executed in background
 - Regression bug in `sshd` version 4.2

- Failure characteristics
 - Users had X11 forwarding (`X11Forwarding`) enabled
 - X11 forwarding code modified to fix channel leaks
 - Destroys X11 connections whose session has ended
 - Connections started in background close session immediately
Experimental Setup

- **Upgrade deployment**: environment data from 87 machines
- **8 real application configs**: 3 have failure settings
- **8 inputs**: 3 inputs that activate failures
- **Training set has 57 profiles, remaining 30 test profiles**
- **Feature selection**
 - 20 fail profiles, 67 success profiles
 - Features within 30% of the top-ranked feature considered suspect

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Type of values</th>
<th>No. of profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System</td>
<td>Application Specific</td>
</tr>
<tr>
<td>Perfect (100%)</td>
<td>Real</td>
<td>Real</td>
</tr>
<tr>
<td>Imperfect(60%)</td>
<td>Real</td>
<td>Real</td>
</tr>
<tr>
<td>Imperfect(20%)</td>
<td>Real</td>
<td>Real</td>
</tr>
</tbody>
</table>

Upgrade deployment: environment data from 87 machines. 8 real application configs: 3 have failure settings. 8 inputs: 3 inputs that activate failures. Training set has 57 profiles, remaining 30 test profiles. Feature selection - 20 fail profiles, 67 success profiles. Features within 30% of the top-ranked feature considered suspect.
Recommendation Results

<table>
<thead>
<tr>
<th>Bug</th>
<th>Experiment</th>
<th>Initial Users (Training Data)</th>
<th>New Users (Test Data)</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Success</td>
<td>Failure</td>
<td>Success</td>
</tr>
<tr>
<td>Port Forwarding</td>
<td>Perfect (100%)</td>
<td>42</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Imperfect (60%)</td>
<td>48</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Imperfect (20%)</td>
<td>34</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>X11 Forwarding</td>
<td>Perfect (100%)</td>
<td>42</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Imperfect (60%)</td>
<td>48</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Imperfect (20%)</td>
<td>34</td>
<td>3</td>
<td>29</td>
</tr>
</tbody>
</table>

- Produces accurate recommendations: **96-100% accuracy**
- Mispredicts one failures: closer to success profiles
- Prevents upgrade failures for most new users
Outline

➢ Overview

➢ Mojave: A Recommendation System

➢ Evaluation

➢ Conclusion
Conclusion

Mojave: first upgrade recommendation system

- Integrates users in the upgrade deployment cycle
- Leverages past similarity between user attributes
- Uses a novel combination of techniques
 - Machine learning
 - Static and dynamic analyses
 - Program behavior similarity
- Prevents upgrade failures for most new users
Thanks for your time!

Questions?