Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization

Wei Chen, Jia Rao*, and Xiaobo Zhou
University of Colorado, Colorado Springs
* University of Texas at Arlington
Data Center Computing

• Challenges
 – Increase hardware utilization and efficiency
 – Meet SLOs

• Heterogeneous workloads
 – Diverse resource demands
 ✓ Short jobs v.s. long jobs
 – Different QoS requirements
 ✓ Latency v.s. throughput
Data Center Computing

• Challenges
 – Increase hardware utilization and efficiency
 – Meet SLOs

• Heterogeneous workloads
 – Diverse resource demands
 ✓ Short jobs v.s. long jobs
 – Different QoS requirements
 ✓ Latency v.s. throughput

Long jobs help improve hardware utilization while short jobs are important to QoS
Data Center Trace Analysis

Distribution of JCT

10% long jobs account for 80% resource usage

Task event statistics

Tasks are evicted if encountering resource shortage

Google traces (https://github.com/google/cluster-data)
Data Center Trace Analysis

10% long jobs account for 80% resource usage

Short jobs have higher priority and most preempted (evicted) tasks belong to long jobs

Tasks are evicted if encountering resource shortage

Google traces (https://github.com/google/cluster-data)
Overhead of Kill-based Preemption

1. MapReduce jobs experience various degrees of slowdowns
2. Spark jobs suffer from more slowdowns due to frequent inter-task synchronization and the re-computation of failed RDDs
Our Approach

• Container-based task preemption
 – Containerize tasks using *docker* and control resource via *cgroup*
 – Task preemption *without losing the execution progress*
 ✓ Suspension: reclaim resources from a preempted task
 ✓ Resumption: re-activate a task by restoring its resource

• Preemptive fair share scheduler
 – Augment the capacity scheduler in YARN with preemptive task scheduling and fine-grained resource reclamation
Related Work

• Optimizations for heterogeneous workloads
 – YARN [SoCC’13]: kill long jobs if needed
 – Sparrow [SOSP’13]: decentralized scheduler for short jobs
 – Hawk [ATC’15]: hybrid scheduler based on reservation

• Task preemption
 – Natjam [SoCC’13], Amoeba [SoCC’12]: proactive checkpointing
 – CRIU [Middleware’15]: on-demand checkpointing

• Task containerization
 – Google Borg [EuroSys’15]: mainly for task isolation

<table>
<thead>
<tr>
<th>Issue</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long job slowdown and resource waste</td>
<td>YARN, Hawk</td>
</tr>
<tr>
<td>No mechanism for preemption</td>
<td>Sparrow, CRIU</td>
</tr>
<tr>
<td>Hard to determine optimal reservation</td>
<td>Hawk, CRIU</td>
</tr>
<tr>
<td>Hard to decide frequency</td>
<td>Natjam, CRIU</td>
</tr>
<tr>
<td>Application changes required</td>
<td>Natjam, CRIU</td>
</tr>
<tr>
<td>Still kill-based preemption</td>
<td>Google Borg</td>
</tr>
</tbody>
</table>
Related Work

• Optimizations for heterogeneous workloads
 – YARN [SoCC’13]: kill long jobs if needed
 – Sparrow [SOSP’13]: kill long jobs if needed
 – Hawk [ATC’15]: hybrid scheduler based on reservation
 – Long job slowdown and resource waste

• Task preemption
 – Natjam [SoCC’13], Amoeba [SoCC’12]: proactive checkpointing
 – CRIU [Middleware’15]: on-demand checkpointing
 – If short jobs can timely preempt long jobs
 – No need for cluster reservation
 – Preserving long job’s progress
 – Application agnostic
 – Fine-grained resource management
 – Hard to decide frequency
 – Application changes required

• Task containerization
 – Google Borg [EuroSys’15]: mainly for task isolation
 – Still kill-based preemption
Container-based Task Preemption

• Task containerization
 – Launch tasks in Docker containers
 – Use cgroup to control resource allocation, i.e., CPU and memory

• Task suspension
 – Stop task execution: deprive task of CPU
 – Save task context: reclaim container memory and write dirty memory pages onto disk

• Task resumption
 – Restore task resources
Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

Memory usage

Swapping activity

- Reclaim memory
- Restore memory
- Deprive CPU
- Restore CPU & memory
Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

Suspended task is alive, but does not make progress or affect other tasks
Two Types of Preemption

• Immediate preemption (IP)
 – Reclaims all resources of a preempted task in **one** pass
 – **Pros:** simple, fast reclamation
 – **Cons:** may reclaim more than needed, incur swapping, and cause long reclamation

• Graceful preemption (GP)
 – Shrinks a preempted task and reclaims its resources in **multiple** passes, at a step of $\tilde{r}=(c, m)$
 – **Pros:** fine-grained reclamation, avoid swapping
 – **Cons:** complicated, slow reclamation, tuning of step r needed
BIG-C: Preemptive Cluster Scheduling

- **Container allocator**
 - Replaces YARN's nominal container with docker

- **Container monitor**
 - Performs container suspend and resume (S/R) operations

- **Resource monitor & Scheduler**
 - Determine how much resource and which container to preempt

Source code available at https://github.com/yncxcw/big-c
YARN’s Capacity Scheduler

Cluster resource

DRF
Capacity scheduler

Work conserving, use more than fair share if rsc is available
YARN’s Capacity Scheduler

Work conserving, use more than fair share if rsc is available
YARN’s Capacity Scheduler

Work conserving, use more than fair share if rsc is available
YARN’s Capacity Scheduler

\(\overline{r}_l \): long job demand
\(\overline{f}_l \): long job fair share
\(\overline{a} \): over-provisioned rsc
\(\overline{r}_s \): short job demand
\(\overline{p} \): rsc to preempt

\[\overline{a} = \overline{r}_l - \overline{f}_l \]

If \(\overline{r}_s < \overline{a} \)
\[\overline{p} = \overline{r}_s \]

else
\[\overline{p} = \overline{a} \]

- At least kill one long task
- Rsc reclamation does not enforce DRF

Work conserving, use more than fair share if rsc is available
Preemptive Fair Share Scheduler

Work conserving, use more than fair share if rsc is available

DRF
Preemptive fair sharing

Cluster resource

Capacity scheduler

VOID
Preemptive Fair Share Scheduler

Work conserving, use more than fair share if rsc is available

DRF

Preemptive fair sharing

Cluster resource
Preemptive Fair Share Scheduler

- Work conserving, use more than fair share if rsc is available

DRF

Preemptive fair sharing
Preemptive Fair Share Scheduler

\[\bar{r}_i: \text{long job demand} \]
\[f_i: \text{long job fair share} \]
\[\bar{a}: \text{over-provisioned rsc} \]
\[\bar{r}_s: \text{short job demand} \]
\[\bar{p}: \text{rsc to preempt} \]

\[\bar{a} = \bar{r}_i - f_i \]

If \(\bar{r}_s < \bar{a} \)

- Preempt part of task rsc

else

\[\bar{p} = \text{ComputeDR}(\bar{r}_l, \bar{a}) \]

- Enforce DRF, avoid unnecessary reclamation
Compute DR at Task Preemption

If \(\vec{r}_s = \langle 20\text{CPU}, 10\text{GB} \rangle \) and \(\vec{a} = \langle 10\text{CPU}, 15\text{GB} \rangle \), what is \(\vec{p} \)?

- **Capacity scheduler**
 \[\vec{p} = \langle 10\text{CPU}, 10\text{GB} \rangle \]

- **Preemptive fair sharing**
 \[\vec{p} = \langle 10\text{CPU}, \frac{10\text{GB}}{20\text{CPU}} \times 10\text{GB} \rangle \]
 \[= \langle 10\text{CPU}, 5\text{GB} \rangle \]
Compute DR at Task Preemption

If $\overrightarrow{r_s} = \langle 20 \text{CPU}, 10 \text{GB} \rangle$ and $\overrightarrow{a} = \langle 10 \text{CPU}, 15 \text{GB} \rangle$, what is \overrightarrow{p}?

• Capacity scheduler
 $\overrightarrow{p} = \langle 10 \text{CPU}, 10 \text{GB} \rangle$

• Preemptive fair sharing
 $\overrightarrow{p} = \langle 10 \text{CPU}, \frac{10 \text{GB}}{20 \text{CPU} \times 10 \text{GB}} \rangle$
 $= \langle 10 \text{CPU}, 5 \text{GB} \rangle$

$\overrightarrow{r_s}$ is the total demand of many small tasks, which may not be able to fully use 10GB mem since CPU is not fully satisfied.

Memory reclamation is in proportion to the reclaimed CPU according to $\overrightarrow{r_s}$.
Container Preemption Algorithm

Choose a job with the longest remaining time

Job has containers? Yes

Choose a container \(c \) from the preempted job

\[
\vec{p} = \vec{p} - \vec{r}_{IP} \text{ OR } \vec{p} = \vec{p} - \vec{r}_{GP}
\]

Reclaim resource \(\vec{r} \) from container \(c \). Freeze \(c \) if swapping

\[\vec{p} > \langle 0, 0 \rangle \] Yes

END

No

No
Container Preemption Algorithm

Choose a job with the longest remaining time

Job has containers?

Immediate preemption (IP) suspends a container and reclaims its entire resource r_{IP}

Graceful preemption (GP) shrinks a container and reclaims its resource at a step of r_{GP}. GP reclaims resources from multiple tasks (containers) and jobs.

Choose a container c from the preempted job

$\hat{p} = \hat{p} - r_{IP}$ OR $\hat{p} = \hat{p} - r_{GP}$

Reclaim resource r from container c. Freeze c if swapping

$\vec{p} > \langle 0, 0 \rangle$?
Optimizations

• Disable speculative execution of preempted tasks
 – Suspended tasks appear to be slow to the cluster manager and will likely trigger futile speculative execution

• Delayed task resubmission
 – Tasks may be resubmitted immediately after preemption, causing them to be suspended again. A suspended task is required to perform D attempts before it is re-admitted
Experimental Settings

• Hardware
 – 26-node cluster; 32 cores, 128GB on each node; 10Gbps Ethernet, RAID-5 HDDs

• Software
 – Hadoop-2.7.1, Docker-1.12.1

• Cluster configuration
 – Two queues: 95% and 5% shares for short and long jobs queues, respectively
 – Schedulers: FIFO (no preemption), Reserve (60% capacity for short jobs), Kill, IP and GP
 – Workloads: Spark-SQL as short jobs and HiBench benchmarks as long jobs
High, low, and multiple bursts of short jobs.
Long jobs persistently utilize 80% of cluster capacity.
Short Job Latency with Spark

- FIFO is the worst due to the inability to preempt long jobs
- Reserve underperforms due to lack of reserved capacity under high-load
- GP is better than IP due to less resource reclamation time or swapping
Performance of Long Spark Jobs

- FIFO is the reference performance for long jobs.
- GP achieves on average 60% improvement over Kill.
- IP incurs significant overhead to Spark jobs:
 - aggressive resource reclamation causes system-wide swapping
 - completely suspended tasks impede overall job progress
Short Job Latency with MapReduce

- FIFO (not shown) incurs 15-20 mins slowdown to short jobs
- Re-submissions of killed MapReduce jobs block short jobs
- IP and GP achieve similar performance
Performance of Long MapReduce Jobs

- Kill performs well for map-heavy workloads
- IP and GP show similar performance for MapReduce workloads
 - MapReduce tasks are loosely coupled
 - A suspended task does not stop the entire job
Google Trace

Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as long jobs.
Google Trace

Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as long jobs.

- IP and GP guarantee short job latency
- GP improved the 90th percentile long job runtime by 67%, 37% and 32% over kill, IP, and Reserve, respectively
- 23% long jobs failed with kill-based preemption while BIC-C cause NO job failures.
Summary

• Data-intensive cluster computing lacks an efficient mechanism for task preemption
 – Task killing incurs significant slowdowns or failures to preempted jobs

• **BIG-C** is a simple yet effective approach to enable preemptive cluster scheduling
 – lightweight virtualization helps to containerize tasks
 – Task preemption is achieved through precise resource management

• **Results:**
 – BIG-C maintains short job latency close to reservation-based scheduling while achieving similar
 long job performance compared to FIFO scheduling