Sibylla: To Retry or Not To Retry on Deep Learning Job Failure

Taeyoon Kim, Suyeon Jeong, Jongseop Lee
Soobee Lee, Myeongjae Jeon

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY
Shared multi-tenant GPU clusters today

Shared GPU cluster is commonly used to run DL workloads

Resource scheduling
Storage for data & model
Failure handling

Cluster Manager
Problem: Job failure of DL training

Unsuccessful job completion with job failures (resource waste)
Prior studies: failure root cause and impact analysis [1, 2]

How to deal with various failures to enhance the cluster resource utilization?

Two types of job failures

Deterministic failure (DT failure)
- Failure will repeat with retry on failure
 Ex) Syntax errors, API misuse, corrupted data

Non-deterministic failure (NDT failure)
- Failure is transient and can be overcome with retry on failure
 Ex) Network failures, MPI daemon errors
Existing approaches for failure handing

Fixed number of retries on failed jobs
(+) Increase job success rate (retrying NDT failures)
(−) Waste resources (retrying DT failures)

Termination of failed jobs
(+) Avoid worthless retry on DT failures
(−) Lower job success rate (not retrying NDT failures)
Sibylla: Predicting DT vs. NDT failure

Goal No retry on DT failure and retry on NDT failure

Failure classifier in Sibylla

1. Highly accurate with various training error logs
2. Continuously updating without human intervention
Opportunity on predictive retry

Analysis using Microsoft Philly trace [1]

Resource inefficiency caused by DT failures

• 5–23% of jobs experience DT failures across job sizes
• 12–20% of GPU hours are wasted for retrying DT failures

Opportunity on predictive retry

Analysis using Microsoft Philly trace [1]

Resource inefficiency caused by DT failures
- 5–23% of jobs experience DT failures across job sizes
- 12–20% of GPU hours are wasted for retrying DT failures

Classifying failures by Sibylla can save *significant GPU hours wasted by frequent DT failures!*
Sibylla: Predicting DT vs. NDT failure

Goal No retry on DT failure and retry on NDT failure

Failure classifier in Sibylla

1. Highly accurate with various training error logs
 • RNN model-based classifier for determining DT/NDT

2. Continuously updating without human intervention
Data source: stderr/stdout streams

Challenge Unstructured and diverse log formats

```
in forward(self, x, hidden)
  ---> 17  x, hidden= self.lstm(x,hidden)
torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
  --> 727  result = self.forward(*input, **kwargs)
torch\nn\modules\rnn.py in forward(self, input, hx)
  --> 234  result = _impl(input, hx, ...)

TypeError: rnn_tanh() received an invalid combination of arguments - got (Tensor, Tensor, list, ...), but expected one of: * (Tensor, Tensor, Tensor, ...) didn't match because some of the arguments have invalid types: (Tensor, Tensor, !list!, ...)
```
Sibylla: Text preprocessing

Failed job log

Loading input is finished
Loading output is finished
Model loading success

Loading * is finished
Model loading success

[0.3, 0.2, ……, 0.6]
[0.6, 0.3, ……, 0.1]
Sibylla: Training phase

Failed job log (Labeled)

Log data correctly labeled by domain experts

RNN models (e.g., LSTM, GRU) to build the classifier
Sibylla: Predicting DT vs. NDT failure

Goal No retry on DT failure and retry on NDT failure

Failure classifier in Sibylla:

1. Highly accurate with various training error logs
2. Continuously updating without human intervention
 - Auto-labeling mechanism with classifier’s decision
Online logs auto-labeled for incremental model update
Auto-labeling based on an ensemble method
Tying all together

Kill or Retry

Cluster Manager

Failed job log

Sibylla

Training started
Can *Sibylla* improve cluster efficiency?

Data collection
- 97 logs from a datacenter operator & 159 logs from Stack Overflow
- Augmented from 256 (97+159) to 4468 failure logs

Training strategy
- 20% for initial training, then each 10% auto-labeled for updating classifier

Comparison to Clustering, LSTM, GRU, and Oracle

Can *Sibylla* classify failure type well?

Sibylla outperforms other methods in classifying NDT failures

Precision

Recall
Can *Sibylla* classify failure type well?

Sibylla outperforms other methods in classifying NDT failures.

Precision

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustering</td>
<td>LSTM</td>
<td>GRU</td>
<td>Sibylla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

97.36%

Recall

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustering</td>
<td>LSTM</td>
<td>GRU</td>
<td>Sibylla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

98.66%

Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>Sibylla</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>97.36</td>
<td>98.66</td>
</tr>
<tr>
<td>Recall</td>
<td>98.66</td>
<td>98.66</td>
</tr>
</tbody>
</table>
Can *Sibylla* improve cluster efficiency?

Trace-driven simulation

- Job scheduling trace from Microsoft Philly
- Job execution simulator from Tiresias [1]

Three job scheduling policies

- Smallest Job First (SJF), 2D-LAS (DLAS), 2D-Gittins index (GITTINS)

Cluster specification

- 200 nodes, each 8 GPUs, 256GB of host memory, and 64 CPU cores

Can *Sibylla* improve cluster efficiency?

Comparison to

- Oracle: 100% correct predictions
- Full Retry: Retrying jobs w/o prediction (same as *Philly*)
Can *Sibylla* improve cluster efficiency?

Job completion time with Sibylla

- Improves 15.4% for SJF, 6.5% for DLAS and GITTINS than Full Retry
- Worsens only 1.0% compared with 100% correct prediction

Can Sibylla improve cluster efficiency?

Job completion time with Sibylla

- Improves 15.4% for SJF, 6.5% for DLAS and GITTINS than Full Retry
- Worsens only 1.0% compared with 100% correct prediction
Can *Sibylla* maintain job success rate?

Success rate on predictive retry
- Misprediction on failed job leads to lower job success rate

Compared to *Full Retry*
- *Full Retry* has highest job success rate
- *Sibylla* is lower the job success rate by only 0.06% from 75.04%
Conclusion

Job failure classifier

- *Sibylla*, predicting DT and NDT to help cluster kill DT and retry NDT

Performance of *Sibylla*

- *Sibylla* achieves consistently high performance on classifying failures
- Predictive retry with *Sibylla* can improve cluster efficiency