

Worldwide Cloud Services Partner

Whale: Efficient Giant Model Training over Heterogeneous GPUs

Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji Shi, Jie Zhang, Xinyuan Li, Langshi Chen, Yong Li, Zhen Zheng, Xiaoyong Liu, Wei Lin

> Alibaba Group 07/12/2022

> > WWW.ALIBABA CLOUD.COM

Model-Size Increasing

AI and Memory Wall: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

AI and Memory Wall

Memory & Bandwidth Wall

AI and Memory Wall: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Worldwide Cloud Services Partner

AI and Memory Wall

10TB Baidu RecSys	
2TB Baidu RecSys	
GShard	

Distributed Training Strategies

Data Parallelism

Worldwide Cloud Services Partner

Pipeline Parallelism

Tensor Model Parallelism

Data + Pipeline

- Pure pipeline parallelism does not scale well with more GPUs - Nested DP with pipeline

Data + Pipeline + Tensor

Apply different strategies to different model parts.

Heterogeneity in GPU Clusters

Gang Schedule

- Heterogeneous GPUs as a resource
- (*e.g.*, Computing Pool with GPUs: P100, V100, A100 and etc)

Challenges: Heterogeneous GPU Training

Inefficiency in utilizing heterogeneous GPUs

- different GPU types: different computing/memory/network capacity
- imbalance in computing time -> low utilization
- gap between model development and the hardware environment

(a) Naïve DP with identical batch size

	<u> </u>
	\neg
Idle GPU cycle	Sync
	\mathbf{A}
	Sy
	nc

Gaps and Opportunities

- Lack of unified abstraction to support all of the parallel strategies and the hybrids

- Fully automatic parallel strategy has high cost for giant models
- Inefficiency in utilizing heterogeneous GPUs

- Require significant model code refactoring

Gaps and Opportunities

- Lack unified abstraction to support all of the parallel strategies and the hybrids
- Unified abstraction for strategy expression
- Fully automatic parallel strategy has high cost for giant models
- ✓ Incorporate user hints
- Inefficiency in utilizing heterogeneous GPUs
- Parallel strategies should be used adaptively and dynamically
- Require significant model code refactoring
- Minimize code change, switch among strategies easily

Whale: Efficient Giant Model Training over Heterogeneous GPUs

- Two new high-level primitives for unified expression
- Transform distributed models efficiently and automatically
- Hardware-aware load balancing algorithm

- Train the largest multi-modality model M6 with ten trillion model with only 4-lines of code change

Outline

- Introduction
- Whale: design abstraction
- Whale: parallel planner
- Whale: hardware-aware load balance
- Evaluation
- Conclusion

Abstraction: Internal Key Concepts

TaskGraph

VirtualDevice

Parallel Primitives

Parallel primitive is a Python context manager. Operations defined under form one TaskGraph (TG)

replicate(device_count) annotates a TG to be replicated. - device_count: #devices for TG replicas

split(device_count) annotates a TG to apply intra-tensor sharding. - device_count: #devices for sharded partitions

Parallel Examples

import whale as wh wh.init(wh.Config({ "num_micro_batch": 8})) with wh.replicate(1): model_stage1() with wh.replicate(1): model_stage2()

Pipeline with 2 TaskGraphs


```
import whale as wh
wh.init()
with wh.replicate(total_gpu):
  features = ResNet50(inputs)
with wh.split(total_gpu):
  logits = FC(features)
  predictions = Softmax(logits)
```

Hybrid of replicate and split

Parallel Planner

(b) Virtual device generation

(c) Parallel plan Generation

Hardware-aware Load Balancer

Balance the computing load proportional to the device computing capacity, s.t. memory constraints.

Data parallelism: balance the FLOP by adjusting local batch while keeps the mini-batch unchanged.

Tensor Model Parallelism: balance the FLOP of partitioned operations through uneven sharding.

(a) Naïve DP with identical batch size

(b) Hardware-aware DP with load balance

Memory-Constraint Load Balancing

Algorithm 1: Memory-Constraint Load Balancing

	Input: TaskGraph TG, VirtualDevice(N)
1	$load_ratios = 0; mem_utils = 0; flop_utils = 0$
2	$oom_devices = \emptyset$; free_devices = \emptyset
3	foreach $i \in 0N$ do
4	$load_ratios[i] = \frac{DF_i}{\sum_{i=0}^N DF_i}$
5	$mem_utils[i] = \frac{load_ratios[i] * TG_{mem}}{DM_i}$
6	$flop_utils[i] = \frac{load_ratios[i] * TG_{flop}}{DF_i}$
7	if $mem_utils[i] > 1$ then
8	oom_devices.append(i)
9	else
10	<pre>_ free_devices.append(i)</pre>
11	while $oom_devices \neq 0$ & free_devices $\neq 0$ do
12	<pre>peak_device = argmax(oom_devices, key = mem_util</pre>
13	valley_device = argmin(free_devices, key =
	(flop_utils,mem_utils))
14	if shift_load(peak_device, valley_device) == succes
	then
15	update_profile(mem_utils, flop_utils)
16	oom_devices.pop(peak_device)
17	else
18	<pre>_ free_devices.pop(valley_device)</pre>

C-) Alibaba Cloud $\langle \langle \langle \rangle \rangle$

Worldwide Cloud Services Partner

MB/FWD/Activation Memory **MB FWD Activation MB FWD Activation** Other Memory Other Memory Consumption Consumption ils) TaskGraph0 TaskGraph1 V100 32GB P100 16GB

ess

Load Balancer Example

- Earlier TaskGraph has higher peak memory than later TaskGraph (e.g. BertLarge)

- Place earlier TaskGraphs on devices with higher memory capacity.

- Partition the model operations to TaskGraphs in a topological sort, balance the TaskGraphs computing FLOP proportional to device capacity.

Peak memory for TaskGraphs (BertLarge, micro-bs=6)

Outline

- Introduction
- Whale: design abstraction
- Whale: parallel planner
- Whale: hardware-aware load balance
- Evaluation
- Conclusion

Micro-benchmark: Single Parallel Strategy

(c) Whale pipeline on BertLarge outperforms Gpipe * 4-stages 1.45X *,* and 8 stages 1.14X

- (a, b) Whale DP obtained better performance than TF Estimator DP on ResNet and BertLarge

Micro-benchmark: Hybrid Strategy

(a) Hybrid pipe+DP (TG=2 and TG=4) got better performance than pure pipe (TG=8) on 8 GPUs (b) #class=100K, Hybrid split+DP got better performance than pure DP, 1.13~2.43X \checkmark (c) #class=1M, DP fails due to OOM. Hybrid achieved 95% scaling from 8~32GPUs

DP vs Hybrid

Hybrid strategy

Micro-benchmark: Hardware-aware

(a) Hardware-Aware DP

Setup: 8 32GB V100 GPUs and 8 16GB P100 GPUs (a) Hardware-aware DP got 1.3X to 1.4X (b) Hardware-aware Pipeline got 1.2X

(b) Hardware-Aware Pipeline

Industry-Scale Giant Model Training

- M6-10B: 91% throughput scalability from 8 to 256 GPUs
- M6-MoE-10T: A few lines to switch from pipeline to tensor model parallelism (MoE). Train on 512 NVIDIA V100 GPUs.


```
import whale as wh
wh.init()
```

C-) Alibaba Cloud

Worldwide Cloud Services Partner

wh.set_default_strategy(wh.replicate(total_gpus)) combined_weights, dispatch_inputs=gating_dispatch() with wh.split(total_gpus): outputs = MoE(combined_weights, dispatch_inputs)

(c) M6-MoE-10T

256

Conclusion

Whale: Efficient Giant Model Training over Heterogeneous GPUs

- Efficiency, programmability, and adaptability
- Supports various parallel strategies using a unified abstraction
- Adapts to heterogeneous GPUs with automatic graph optimizations
- Deployed DL infrastructure at Alibaba for real giant model training

[Code] <u>https://github.com/alibaba/EasyParallelLibrary</u>

Thanks

