MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference Serving

Chengliang Zhang†, Minchen Yu†, Wei Wang†, Feng Yan‡

†Hong Kong University of Science and Technology
‡University of Nevada, Reno
Machine Learning Model Serving

Deploy a trained model for user requests
 • Highly dynamic demand
 • Stringent Service Level Objectives on latency

Design objectives
 • Serve ML models on public cloud
 • Scale to dynamic queries
 • Cost-effective
 • SLO-aware: e.g. 98% of the requests must be served under 500ms
Challenges & Opportunities

Unique properties of ML serving
- Compute intensive
- Hardware accelerators: GPU, TPU
- Stateless computation

Cloud services
- Multiple options: IaaS, CaaS, FaaS, MLaaS
- Large configuration space: CPU, memory
- Cost-performance tradeoffs: preemptable, burstable instances

How to reduce over-provisioning?
What option to choose?
Cloud Services for Model Serving

Infrastructure as a Service (IaaS)

Container as a Service (CaaS)

Function as a Service (FaaS, serverless comp.)

Cost

IaaS

CaaS

FaaS

Overhead to scale
Cloud Services for Model Serving

CPU
- On-demand
- Preemptable
 - Spot instances in AWS
 - Preemptable VM in Google cloud

GPU
- Preemptable
 - t2, t3 instances in AWS
 - f1-micro, g1-small in Google cloud

TPU
- Burstable
 - ...

...
We designed MArk

A scale-to-demand, cost-effective, SLO-aware model serving system on cloud

Compared with AWS’s SageMaker, MArk achieves
- Up to 7.8x cost reduction
- Better latency performance
Welcome to our talk!

Day 3, Track II, Machine Learning Applications & System Aspects

- Our insights of IaaS, CaaS, FaaS and their configurations
- Our insights of ML serving on GPUs and TPUs
- How MArk translates our insights into system design
- MArk’s provisioning algorithm
- The evaluation of MArk’s performance