Apache Nemo: A Framework for Building Distributed Dataflow Optimization Policies

Youngseok Yang¹ Jeongyoon Eo¹ Geon-Woo Kim² Joo Yeon Kim³ Sanha Lee⁴ Jangho Seo¹ Won Wook Song¹ Byung-Gon Chun¹

¹Seoul National University ²Viva Republica ³Samsung Electronics ⁴Naver Corp.

Distributed data processing applications and runtime

Application

dataCollection.map(..).reduce(..)
(e.g., DryadLINQ, Spark RDD, Beam)

Policy interfaces for scheduling/communication

Application-levelregister(stat,- Correctness: O(e.g., Optimus)subqueryA, subqueryB)- Fine Control: X

Runtime-level (e.g., Dryad) onEvent(event) { - Correctness: X
modify(DAG, event) - Fine Control: O

Our idea: Transform an intermediate representation

- **IR DAG**: Provides both correctness and fine control
- **Optimization pass**: A function to transform the IR DAG
- **Runtime extensions:** Apply the optimizations

Experimental Evaluation

- Deployment scenarios
 - Resources: Transient, Geo-distributed
 - Data: Large, Skewed
- Results
 - Nemo is on par with specialized runtimes
 - Nemo further improves performance for scenarios with combinations of resource/data characteristics

USENIX ATC 2019, 2:20PM, Track II, on July 10

https://nemo.apache.org/

