Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems

Zhufan Wang*, Guangyan Zhang*, Yang Wang†, Qinglin Yang*, and Jiaji Zhu‡

*Tsinghua University
†The Ohio State University
‡Alibaba Cloud
Overview of Data Recovery Protocol

• Basic idea: replicate data chunks and re-replicate lost chunks

• Responsibility of the recovery protocol:
 • Schedule the source, the destination, and the bandwidth for re-replicating each lost chunk

• Goals of scheduling: high quality and high speed
 • High quality: Achieve fast and low-interference recovery
 • High speed: The scheduling algorithm should not become the bottleneck
Observations from a Production System

• Target system:
 • AliCloud’s distributed storage system: Pangu
 • Deployed on a datacenter with approximately 3500 nodes

• Observations:
 • Very-large scale
 • Tight time constraint
 • Imbalanced resources
 • Dynamic foreground traffic

• Challenge: the scheduling algorithm needs to compute a large and complex problem within seconds
Existing Approaches

• Simple and decentralized scheduler
 • E.g. GFS, HDFS, Azure, RAMCloud, Sparrow, etc
 • High speed but low quality

• Sophisticated and centralized scheduler
 • E.g. CAR, PPR, Mirador, DH-HDFS, Firmament, etc
 • High quality but low speed
Dayu: High-quality and high-speed Recovery

- Evaluation result:
 - 2.96x recovery speed with only 3.7% increase in tail latency
 - Can scale to the cluster of 25K nodes
Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems

Coming soon.

ATC 2019
Friday, July 12, 12:30 am
Track: Storage Failure & Recovery