INSIDER:
Designing In-Storage Computing System for Emerging High-Performance Drive

Zain (Zhenyuan) Ruan, Tong He, Jason Cong
University of California, Los Angeles
"Moore’s Law" of storage drive: bandwidth doubles every two years.
Data Movement Bottleneck

• “Moore’s Law” of storage drive: bandwidth doubles every two years.

➢ The interconnection performance does not scale well.
Existing Work

Host

Drive

Controller

Storage Chips

cmd

much data
Existing Work

➢ In-storage computing.

Diagram:
- Host
- Drive
- Controller
- Storage Chips
- cmd
- much data
Existing Work

➢ In-storage computing.
Existing Work

➢ In-storage computing.
Existing Work

- In-storage computing.
Existing Work

- In-storage computing.

- Limited performance or flexibility.
 - ARM-based --- insufficient comp. speed.
 - ASIC-based --- specific to few workloads.

- High programming efforts.
- Not compatible with existing APIs.
- Requires considerable code modifications.
- Lack of crucial system supports.
- Drive prog. may access unwarranted data.
- No scheduling among drive programs.
Existing Work

- In-storage computing.

- Limited performance or flexibility.
 - ARM-based --- insufficient comp. speed.
 - ASIC-based --- specific to few workloads.

- High programming efforts.
 - Not compatible with existing APIs.
 - Requires considerable code modifications.
Existing Work

- In-storage computing.

- Limited performance or flexibility.
 - ARM-based --- insufficient comp. speed.
 - ASIC-based --- specific to few workloads.

- High programming efforts.
 - Not compatible with existing APIs.
 - Requires considerable code modifications.

- Lack of crucial system supports.
 - Drive prog. may access unwarranted data.
 - No scheduling among drive programs.
INSIDER System

• Limited performance or flexibility.
 • ARM-based --- insufficient comp. speed.
 • ASIC-based --- specific to few workloads.

• High programming efforts.
 • Not compatible with existing APIs.
 • Requires considerable code modifications.

• Lack of crucial system supports.
 • Drive prog. may access unwarranted data.
 • No scheduling among drive programs.
INSIDER System

FPGA-based.
12X perf., 31X cost efficiency.

- Limited performance or flexibility.
 - ARM-based --- insufficient comp. speed.
 - ASIC-based --- specific to few workloads.
- High programming efforts.
 - Not compatible with existing APIs.
 - Requires considerable code modifications.
- Lack of crucial system supports.
 - Drive prog. may access unwarranted data.
 - No scheduling among drive programs.
INSIDER System

FPGA-based.
12X perf., 31X cost efficiency.

File-based abstraction for in-storage computing

- Limited performance or flexibility.
 - ARM-based --- insufficient comp. speed.
 - ASIC-based --- specific to few workloads.

- High programming efforts.
 - Not compatible with existing APIs.
 - Requires considerable code modifications.

- Lack of crucial system supports.
 - Drive prog. may access unwarranted data.
 - No scheduling among drive programs.
INSIDER System

FPGA-based.

12X perf., *31X* cost efficiency.

File-based abstraction for in-storage computing

A control plane that enforces perm. check and scheduling.

- Limited performance or flexibility.
 - ARM-based --- insufficient comp. speed.
 - ASIC-based --- specific to few workloads.

- High programming efforts.
 - Not compatible with existing APIs.
 - Requires considerable code modifications.

- Lack of crucial system supports.
 - Drive prog. may access unwarranted data.
 - No scheduling among drive programs.
Interested? Welcome to our talk at

Day 2, Track I, Session Programmable I/O Device