SOPHIA: Online Reconfiguration of Clustered NoSQL Databases for Time-Varying Workloads

Ashraf Mahgoub¹, Paul Wood², Alexander Medoff³, Subrata Mitra³, Folker Meyer⁴, Somali Chaterji¹, Saurabh Bagchi¹

1: Purdue University; 2: Johns Hopkins University; 3: Adobe Research; 4: Argonne National Laboratory

Supported by NIH R01 AI123037-01, 2016-21 & WHIN grant (from the Lilly Endowment)
Why Do Online Tuning of NoSQL Databases?

- Database Management Systems (DBMS) have a plethora of performance-related parameters
- The exact setting of these parameters determines the DBMS performance
- The optimal setting is specific to the application
- Application characteristics change over time and a desirable configuration may become sub-optimal

Our Target: Clustered NoSQL Databases (Examples: Cassandra, Redis, MongoDB, ScyllaDB)
Challenges of Online Tuning

1. Large configuration parameter search space.
 - Complex interdependencies exist among the parameters

2. A new workload pattern does not necessarily mean switch to new configuration
 - Performance degradation during reconfiguration process
 - New workload pattern may be shortlived

3. Data availability must be maintained during reconfiguration
 - Many parameters need server restart
 - Staggered restart of servers needed through a distributed protocol to meet availability and consistency requirements
Look Before You Leap Change

Cassandra DBMS, MG-RAST production trace
servers = 2, Replication Factor (RF) = 2
Consistency Level (CL) = 1

- The default configuration can be switched to a read-optimized one for increase in throughput (40Kops/s → 50Kops/s)
- Temporary throughput loss due to transient unavailability of server instances as they undergo reconfiguration, one instance at a time
- The dashed line gives the gain over time in terms of the total # operations served relative to the default configuration
 - There is a cross-over point such that if the new workload pattern lasts greater than this threshold then it is worthwhile reconfiguring
Technical Contributions: SOPHIA

1. We show that today’s state-of-the-art static tuners degrade throughput below the default configuration and degrade data availability.

2. SOPHIA performs cost-benefit analysis to achieve long-horizon optimized performance for clustered NoSQL DBMS in the face of dynamic workload changes.

3. SOPHIA executes a distributed protocol to gracefully switch over the cluster to the new configuration while meeting data consistency and availability guarantees.
Evaluation

• We implement and evaluate SOPHIA on two NoSQL databases, Cassandra and Redis

• We use three application traces:
 1. MG-RAST: largest metagenomics portal hosted at Argonne
 2. Bus-tracking application trace, and
 3. Data analytics jobs as would be submitted to an HPC cluster

• We show improvements over
 1. Default configuration
 2. Static optimized
 3. Naïve reconfiguration
 4. Commercial auto-tuning NoSQL database (ScyllaDB)
Talk and Poster Info

Track: “Big-Data Programming Models & Frameworks”, July 10th (Wednesday), 2:20-3:40 pm, Track II

Poster Session: July 10th (Wednesday), 6:00-7:30 pm