NeuGraph:
Parallel Deep Neural Network Computation on Large Graphs

Lingxiao Ma†, Zhi Yang†, Youshan Miao‡, Jilong Xue‡, Ming Wu‡, Lidong Zhou‡, Yafei Dai†

† Peking University
‡ Microsoft Research
NeuGraph: Parallel Deep Neural Network Computation on Large Graphs

Neural Networks
- Self-Driving
- Personal Assistant
- Recommendation
- Question Answering

Input Feature Vector

Graph Neural Networks
- Image Object Detection
- Speech Recognition
- User-Item Graph
- Knowledge Graph

Figures from Internet
Graph Neural Networks (GNN)

- Information propagation via *Graph*
- Information transformation via *Neural Networks*
Challenges in Processing GNNs

- Scalability Problem
- Efficiency Problem

* Figures from Internet
NeuGraph

- Bridge graph and dataflow models to support efficient and scalable GNN processing

SAGA-NN Abstraction

Dataflow Generation

Streaming Optimization

Kernel Optimization

Programming GNN apps

Handle Scalability

Handle Efficiency

Compatibility

TensorFlow

Existing Dataflow System
NeuGraph

- Bridge graph and dataflow models to support efficient and scalable GNN processing

- Performance
 - Outperform state-of-the-art frameworks (e.g., TensorFlow and DGL) on small graphs
 - Scale to large real-world graphs with GPUs

Existng Dataflow System

TensorFlow

SAGA-NN Abstraction
Dataflow Generation
Streaming Optimization
Kernel Optimization

Programming GNN apps
Handle Scalability
Handle Efficiency
Compatibility
NeuGraph

2019 USENIX Annual Technical Conference
Track II: Graph Processing Frameworks

11:55 AM-12:15 PM, on July 11th