Pre-Select Static Caching and Neighborhood Ordering for BFS-like Algorithms on Disk-based Graph Engines

Eunjae Lee, Junghyun Kim, Keunhak Lim, Sam H. Noh, Jiwon Seo
UNIST, Hanyang University
BFS-like Algorithms in Disk-based Graph Engine

- **BFS-like Algorithms**: recursive graph traversal
 - Eg. BFS, Shortest Paths, Betweenness Centrality, ...

- Disk-based Graph Engine
 - Graph (edge lists) is stored on disk
 - When vertices are visited, their edge lists are loaded to page cache
BFS-like Algorithms in Disk-based Graph Engine

- Page cache is inefficient for BFS-like algorithm
 1. Increasing size of page cache **does not** help performance
BFS-like Algorithms in Disk-based Graph Engine

- Page cache is inefficient for BFS-like algorithm
 1. Increasing size of page cache **does not** help performance
 2. Utilization of page cache is **low**
Our Optimization

- BFS-Aware Static Cache (BASC)
 - Keep separate cache for selected edge lists
 - Pre-loaded: edges pre-selected through pre-analysis
 - Static: contents of cache does not change

- Neighborhood Ordering (Norder)
 - Graph ordering optimization for better memory utilization
1. BASC: BFS-Aware Static Cache

- Requested vertices:
 - 1
 - 3
 - 7
 - 11

- Structures:
 - Page Cache
 - BASC
 - DRAM
 - SSD
 - Preload
2. Norder: Neighborhood Ordering

Optimize with Norder

SSD

DRAM

Page Cache

page A

page B

page C

requested vertices

10 → 3 → 7 → 11...

10 → 2 → 3 → 4...

page A

page B

page C

Page Cache

page A

page B

page C

page A

page B

page C
Performance Improvement

- BASC + Norder: 54% faster than Gorder* + Page Cache
 - Tested with 7 BFS-like algorithms & 5 data sets

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Dataset 1</th>
<th>Dataset 2</th>
<th>Dataset 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>2.40</td>
<td>DIAM</td>
<td>BC</td>
</tr>
<tr>
<td>DIAM</td>
<td>6.40</td>
<td></td>
<td>521</td>
</tr>
<tr>
<td>BC</td>
<td>521</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Total cache size is 25% of graph file size
- Gorder is state-of-the-art ordering method [H. Wei, SIGMOD’16]
Presentation

- **Time**
 - Thursday, July 11, 2019
 - Track 2: Graph Processing Frameworks
 - 11:15 AM – 12:35 PM, 4th presentation

- **Authors attending ATC ’19**
 - Eunjae Lee
 - Jiwon Seo
 - Sam H. Noh