Pisces:
A Scalable and Efficient Persistent Transactional Memory

Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang,
Binyu Zang, Haibing Guan, Haibo Chen
Non-volatile memory (NVM) is revolutionizing memory and storage.

- Phase-change memory (PCM)
- Resistive Random-access Memory (ReRAM)
- Intel/Micron 3D-XPoint
Industrialization: Intel 3D-Xpoint

- Non-volatile memory (NVM) is revolutionizing memory and storage

Phase-change memory (PCM) Resistive Random-access Memory (ReRAM) Intel/Micron 3D-XPoint

- The recent release of Intel Optane DC Persistent Memory (3D-XPoint) marks the transition of NVM technology from research prototypes to mainstream products
NVM Features

- Byte-addressability
- Non-volatility (high speed)
- Low read latency and high persistency cost

Intel/Micron 3D-XPoint

10x write latency comparing with DRAM
Programming Abstraction for NVM

- Persistent Transactional Memory (PTM)
 - *transaction* is a widely-used abstraction
 - an efficient abstraction for programming on persistent memory:
 i.e., builds *transactional memory* abstraction over *NVM*
Existing PTM Issues

read-deficiency

Cause: **exposing** high NVM persistence overhead to readers
Existing PTM Issues

read-deficiency

- **w/o conflict**
- **w/ conflict**

Cause: exposing high NVM persistence overhead to readers

low-scalability

Throughput

- **w/o conflict**
- **w/ conflict**

Cause: over-constraining NVM persistence ordering
Can a PTM achieve both read-efficiency and high-scalability?

Cause: exposing high NVM persistence overhead to readers

Cause: over-constraining NVM persistence ordering
Reuse redo logs as new versions

Dual-version concurrency control

Three-stage commit

Pisces

read-efficiency

high-scalability

Read Latency

Throughput

Others

Pisces

CPU cores
Thanks & Welcome

ATC 2019, 11:25 am, Track I, on July 12th