E3: Energy-Efficient Microservices on SmartNIC-Accelerated Servers

Ming Liu, Simon Peter, Arvind Krishnamurthy, Phitchaya Mangpo Phothilimthana
Trend #1: Energy-efficiency has become a major factor for today’s DC

- US data centers consume 70 billion kilowatt-hours of energy per year
- Server CPUs consume the most energy

Trend #2: recent adoption of SoC SmartNICs in servers

- SoC SmartNICs are a new kind of heterogenous computing platform in the data center
 ✓ Present on the packet data path
 ✓ Process networking requests in short latency
 ✓ **Consume low power**
Trend #2: recent adoption of SoC SmartNICs in servers

- SoC SmartNICs are a new kind of heterogeneous computing platform in the data center
 - Present on the packet data path
 - Process networking requests in short latency
 - Consume low power

- LiquidIOII SmartNICs
 - OCTEON 12-core cnMIPS64 processor @1.2GHz
 - Domain-specific accelerators
 - Crypto/Pattern matching/Fetch-add engines
 - Wimpy memory hierarchy
 - 32KB/4MB/4GB L1/L2/DRAM
 - 2x 10Gbps ports
Trend #3: the rise of cloud microservices
Trend #3: the rise of cloud microservices

❖ Microservices
✓ Fine-grained -> small memory footprint
✓ Communication intensive -> invoked via RPCs
✓ Dataflow programming model -> explicit communication patterns

❖ Run by a cluster scheduler
✓ Examples: Azure Service Fabric, Google Application Engine, Nirmata
✓ Easy to explore architectural heterogeneity
Trend #3: the rise of cloud microservices

- We evaluate 8 microservice-based applications of 3 common types
 - Network function virtualization (NFV)
 - Real-time data analytics (RTA)
 - IoT hub (IoT)
- Each application comprises 60 ~ 108 microservices
Example: IoT thermostat analytics application

Stage 1: authentication
Stage 2: sensor logging
Stage 3: data analytics
Example: IoT thermostat analytics application

Stage 1: authentication Stage 2: sensor logging Stage 3: data analytics

Requests

Microservice

RPC request flow
Example: IoT thermostat analytics application

![Diagram](image)

Stage 1: authentication
Stage 2: sensor logging
Stage 3: data analytics

Microservice
RPC request flow

Requests
Example: IoT thermostat analytics application

Stage 1: authentication
Stage 2: sensor logging
Stage 3: data analytics

Microservice
RPC request flow

Requests

API Gateway → SQL store → Spike → EMA
API Gateway → SQL store → Recommend
API Gateway → SQL store → Spike → EMA

Stage 2: sensor logging

RPC request flow
Example: IoT thermostat analytics application

Stage 1: authentication
Stage 2: sensor logging
Stage 3: data analytics
E3 idea: run Microservices on SmartNIC-servers
E3 idea: run Microservices on SmartNIC-servers

- E3 goals:
 - Better energy-efficiency
 - Minimal latency cost

ToR switch

- Ethernet
 - Spike
 - EMA
 - Recommend
 - API Gateway
 - SQL store

SmartNIC-server

Intel XEON inside

PCIe
Two types of SmartNIC-servers

Single-SmartNIC server cluster

- 10GbE Ethernet
- PCIe

Multi-SmartNIC server cluster

- 4x10GbE Ethernet (breakout cable)
- PCIe
- QPI
Two types of SmartNIC-servers

Single-SmartNIC server cluster

- 10GbE Ethernet
- PCIe
- 1x 12-core E5-2680 v3 @2.5GHz
- 64GB DRAM
- 1x LiquidIOII

Multi-SmartNIC server cluster

- 4x 10GbE Ethernet (breakout cable)
- PCIe
- QPI
- 2x 8-core E5-2620 v4 @2.1GHz
- 128GB DRAM
- 4x LiquidIOII
Key question: Do SmartNIC-servers provide better energy efficiency?

VS.

Homogeneous/Heterogenous cluster

SmartNIC-server cluster
Key question: Do SmartNIC-servers provide better energy efficiency?

SmartNIC-server cluster vs. Homogeneous beefy cluster
Key question: Do SmartNIC-servers provide better energy efficiency?

- SmartNIC-server cluster
 - Ethernet
 - PCIe
 - QPI

- Homogeneous beefy cluster
 - Supermicro 1U server
 ✔ Intel 12-core E5-2680 v3 processor @2.5GHz
 ✔ 64GB DRAM
 ✔ 10Gbps Intel X710

Intel beefy server

Intel beefy server
Key question: Do SmartNIC-servers provide better energy efficiency?
Key question: Do SmartNIC-servers provide better energy efficiency?

SmartNIC-server cluster

- Ethernet
- PCIe
- QPI

Homogeneous wimpy cluster

- 1U Cavium CN6880 SoC
 - OCTEON 32-core cnMIPS64 processor @1.2GHz
 - 4GB DRAM
 - 2x 10Gbps XAUI ports
Key question: Do SmartNIC-servers provide better energy efficiency?
Key question: Do SmartNIC-servers provide better energy efficiency?

- Power measurement at each server
 - Onboard IPMI utility + WattsUp Pro meter
 - Report cluster power = aggregate server power

SmartNIC-server cluster

Heterogeneous cluster
Outline

✓ Three challenges of integrating SmartNICs
✓ E3 design
✓ Energy efficiency, cost & latency evaluation
✓ Conclusion
Three challenges of integrating SmartNICs with microservices
Three challenges of integrating SmartNICs with microservices

#1: Addressing and load balancing
Three challenges of integrating SmartNICs with microservices

1. Addressing and load balancing
2. SmartNIC overload
Three challenges of integrating SmartNICs with microservices

#1: Addressing and load balancing
#2: SmartNIC overload
#3: non-uniform communication costs
Outline

✓ Three Challenges of integrating SmartNICs
✓ E3 design
✓ Energy efficiency, cost & latency evaluation
✓ Conclusion
E3: a microservice execution platform

- Follows design philosophies of Azure Service Fabric [Eurosys’18]
- Adds three techniques to support SmartNICs
 - ECMP-based load balancing
 - Load-aware cluster manager
 - Communication-aware microservice placement
E3 technique #1: ECMP-based load balancing

- An intra-server addressing and load-balancing mechanism
E3 technique #1: ECMP-based load balancing

- An intra-server addressing and load-balancing mechanism
E3 technique #1: ECMP-based load balancing

- An intra-server addressing and load-balancing mechanism
E3 technique #1: ECMP-based load balancing

- An intra-server addressing and load-balancing mechanism
E3 technique #1: ECMP-based load balancing

- An intra-server addressing and load-balancing mechanism

Ingress traffic

ECMP @ ToR

Ethernet

PCIe

QPI

10.0.5
E3 technique #1: ECMP-based load balancing

- An intra-server addressing and load-balancing mechanism
E3 technique #1: ECMP-based load balancing

❖ An intra-server addressing and load-balancing mechanism
E3 technique #1: ECMP-based load balancing

- An intra-server addressing and load-balancing mechanism

- 2.5x higher throughput and 2.2x better energy-efficiency
E3 technique #2: load-aware cluster manager

❖ Purpose: avoid host starvation
 - Microservice interference with NIC firmware on SmartNIC memory/cache
❖ Solution:
 - Monitor ingress packet queue depth of SmartNIC, microservice CPU intensity
 - If above threshold, migrate CPU-intensive microservice
E3 technique #2: load-aware cluster manager

❖ Purpose: avoid host starvation
 - Microservice interference with NIC firmware on SmartNIC memory/cache
❖ Solution:
 - Monitor ingress packet queue depth of SmartNIC, microservice CPU intensity
 - If above threshold, migrate CPU-intensive microservice

2 fields added to SF periodic heartbeats:
✓ NIC queue depth
✓ CPU intensity
E3 technique #2: load-aware cluster manager

- Purpose: avoid host starvation
 - Microservice interference with NIC firmware on SmartNIC memory/cache
- Solution:
 - Monitor ingress packet queue depth of SmartNIC, microservice CPU intensity
 - If above threshold, migrate CPU-intensive microservice

❖ Our mechanism achieves 5.9x better energy-efficiency and 27.7% latency reduction
E3 technique #3: Communication-aware microservice placement

- Service Fabric cluster scheduler
 ✓ Simulated annealing
 ✓ Constraints
 - Static node information
 - # of CPUs, memory capacity, …
 - Runtime statistics of each computing node/microservice
 - CPU, network, memory utilization, …
 ❌ Ignores communication latency
E3 technique #3: Communication-aware microservice placement

- Service Fabric cluster scheduler
 - ✔ Simulated annealing
 - ✔ Constraints
 - Static node information
 - # of CPUs, memory capacity, …
 - Runtime statistics of each computing node/microservice
 - CPU, network, memory utilization, …
 - ❌ Ignores communication latency

- E3: hierarchical, communication-aware microservice placement (HCM)
 - ✔ Organize computing nodes into levels of communication distance
 - ✔ Place communicating microservices close to each other
 - ✔ Hierarchical -> prunes search space
E3 technique #3: Communication-aware microservice placement (cont’d)

- HCM algorithm input
 - ✓ G: microservice DAG
 - ✓ V_{src}: source microservice node of the DAG
 - ✓ T: server cluster topology graph
- HCM performs a breadth-first traversal of G
 - ✓ Map microservices to a cluster computing node in T

Subset of Service Fabric
E3 technique #3: Communication-aware microservice placement (cont’d)

- HCM algorithm input
 - G: microservice DAG
 - V_{src}: source microservice node of the DAG
 - T: server cluster topology graph
- HCM performs a breadth-first traversal of G
 - Map microservices to a cluster computing node in T

- 4 layers in a single rack
 - L1: the same computing node as V
E3 technique #3: Communication-aware microservice placement (cont’d)

- HCM algorithm input
 ✓ G: microservice DAG
 ✓ V_src: source microservice node of the DAG
 ✓ T: server cluster topology graph
- HCM performs a breadth-first traversal of G
 ✓ Map microservices to a cluster computing node in T

- 4 layers in a single rack
 - L1: the same computing node as V
 - L2: another computing node on the same server
E3 technique #3: Communication-aware microservice placement (cont’d)

- 4 layers in a single rack
 - L1: the same computing node as V
 - L2: another computing node on the same server
 - L3: a SmartNIC computing node on another server

- HCM algorithm input:
 ✓ G: microservice DAG
 ✓ V_{src}: source microservice node of the DAG
 ✓ T: server cluster topology graph

- HCM performs a breadth-first traversal of G
 ✓ Map microservices to a cluster computing node in T
HCM algorithm input
✓ G: microservice DAG
✓ V_{src}: source microservice node of the DAG
✓ T: server cluster topology graph
HCM performs a breadth-first traversal of G
✓ Map microservices to a cluster computing node in T

4 layers in a single rack
- L1: the same computing node as V
- L2: another computing node on the same server
- L3: a SmartNIC computing node on another server
- L4: a host computing node on other servers
E3 technique #3: Communication-aware microservice placement (cont’d)

- HCM algorithm input
 - G: microservice DAG
 - V_{src}: source microservice node of the DAG
 - T: server cluster topology graph
- HCM performs a breadth-first traversal of G
- Map microservices to a cluster computing node in T

- Compared with Service Fabric, HCM improves energy efficiency by 16.2% and reduces the latency by 13.0%

- L2: another computing node on the same server
- L3: a SmartNIC computing node on another servers
- L4: a host computing node on other servers

Subset of Service Fabric
Outline

✓ Three Challenges of integrating SmartNICs
✓ E3 design
✓ Energy efficiency, cost & latency evaluation
✓ Conclusion
Energy efficiency under peak utilization

- 3 Single-SmartNIC servers vs. 3 beefy servers
 - ✓ Deploy each application via E3, maximize client load without overload
 - ✓ Measure cluster throughput & power

<table>
<thead>
<tr>
<th>Application</th>
<th>Energy Efficiency (KRPJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFV-FIN</td>
<td>15.2X</td>
</tr>
<tr>
<td>NFV-DIN</td>
<td>16.5X</td>
</tr>
<tr>
<td>NFV-IFID</td>
<td>12.3X</td>
</tr>
<tr>
<td>RTA-PTC</td>
<td>11.0X</td>
</tr>
<tr>
<td>RTA-SF</td>
<td>9.7X</td>
</tr>
<tr>
<td>RTA-SHM</td>
<td>8.4X</td>
</tr>
<tr>
<td>IOT-DH</td>
<td>6.1X</td>
</tr>
<tr>
<td>IOT-TS</td>
<td>5.8X</td>
</tr>
</tbody>
</table>

- NFV-FIN: 2.5X improvement
- NFV-DIN: 1.3X improvement
- NFV-IFID: 1.3X improvement
Average/tail latency under peak utilization

- 3 Single-SmartNIC servers vs. 3 beefy servers
- Up to 4% latency cost
Cluster cost efficiency over time of ownership

\[
\frac{Throughput \times T}{CAPEX + Power \times T \times Electricity}
\]
Cluster cost efficiency over time of ownership

\[
\frac{\text{Throughput} \times T}{\text{CAPEX} + \text{Power} \times T \times \text{Electricity}}
\]

Peak microservice throughput in time
Cluster cost efficiency over time of ownership

\[
\frac{Throughput \times T}{CAPEX + Power \times T \times Electricity}
\]

Total cost of ownership in time
Cluster cost efficiency over time of ownership

\[\frac{\text{Throughput} \times T}{\text{CAPEX} + \text{Power} \times T \times \text{Electricity}} \]

Cluster capital cost
Cluster cost efficiency over time of ownership

\[
\frac{Throughput \times T}{CAPEX + Power \times T \times Electricity}
\]

Peak cluster energy cost in time
Cluster cost efficiency over time of ownership - **best case**

- Multi-SmartNIC cluster: up to 1.9x more cost efficient after 5 years
- RTA-SHM contains both compute and IO-intensive microservices

![Graph showing cost efficiency over time of ownership]
Wimpy cluster is most cost efficient when all microservices are IO-intensive
Multi-SmartNIC cluster ranks second (14.1% less after 5 years)
Other evaluations

- E3 power proportionality
- E3 control-plane/data-plane mechanisms perform @ scale
 ✔ Mechanism scalability
 ✔ Tail latencies
 ✔ Energy efficiency under power budgets
Conclusion

❖ SmartNICs are heterogenous computing units on the data path
❖ E3 enables energy-efficient microservices on SmartNIC-servers
 ✓ ECMP-based load balancing
 ✓ Load-aware cluster manager
 ✓ Communication-aware microservice placement
❖ Real system based energy efficiency evaluation
 ✓ Compare with homogenous and heterogeneous clusters
 ✓ SmartNIC-servers win:
 - Up to 3x better energy efficiency
 - Up to 4% latency cost
 - Up to 1.9x better cost efficiency after 5 years of ownership