E3: Energy-Efficient Microservices on SmartNIC-Accelerated Servers

Ming Liu, Simon Peter, Arvind Krishnamurthy, Phitchaya Mangpo Phothilimthana

Trend #1: Energy-efficiency has become a major factor for today's DC

- US data centers consume 70 billion kilowatt-hours of energy per year
- Server CPUs consume the most energy

Trend #2: recent adoption of SoC SmartNICs in servers

- SoC SmartNICs are a new kind of heterogenous computing platform in the data center
 - ✓ Present on the packet data path
- ✓ Process networking requests in short latency
- √ Consume low power

Trend #2: recent adoption of SoC SmartNICs in servers

- SoC SmartNICs are a new kind of heterogenous computing platform in the data center
- ✓ Present on the packet data path
- ✓ Process networking requests in short latency
- √ Consume low power

- LiquidIOII SmartNICs
- ✓ OCTEON 12-core cnMIPS64 processor @1.2GHz
- ✓ Domain-specific accelerators
 - Crypto/Pattern matching/Fetch-add engines
- √ Wimpy memory hierarchy
- 32KB/4MB/4GB L1/L2/DRAM
- ✓ 2x 10Gbps ports

Trend #3: the rise of cloud microservices

Trend #3: the rise of cloud microservices

- Microservices
 - √ Fine-grained -> small memory footprint
 - √ Communication intensive -> invoked via RPCs
 - √ Dataflow programming model -> explicit communication patterns
- Run by a cluster scheduler
- √ Examples: Azure Service Fabric, Google Application Engine, Nirmata
- ✓ Easy to explore architectural heterogeneity

Trend #3: the rise of cloud microservices

- We evaluate 8 microservice-based applications of 3 common types
- √ Network function virtualization (NFV)
- √ Real-time data analytics (RTA)
- √ IoT hub (IoT)
- Each application comprises 60 ~ 108 microservices

E3 idea: run Microservices on SmartNIC-servers

E3 idea: run Microservices on SmartNIC-servers

Two types of SmartNIC-servers

Single-SmartNIC server cluster

Multi-SmartNIC server cluster

Two types of SmartNIC-servers

Single-SmartNIC server cluster

Multi-SmartNIC server cluster

- √ 2x 8-core E5-2620 v4 @2.1GHz
- **√** 128GB DRAM
- √ 4x LiquidIOII

VS.

Homogeneous/Heterogenous cluster

SmartNIC-server cluster

VS.

SmartNIC-server cluster

Homogeneous beefy cluster

SmartNIC-server cluster

Homogeneous beefy cluster

VS.

SmartNIC-server cluster

Homogeneous wimpy cluster

SmartNIC-server cluster

Homogeneous wimpy cluster

VS.

SmartNIC-server cluster

Heterogeneous cluster

SmartNIC-server cluster

Heterogeneous cluster

Outline

- √ Three challenges of integrating SmartNICs
- √ E3 design
- √ Energy efficiency, cost & latency evaluation
- √ Conclusion

#1:Addressing and load balancing

#1:Addressing and load balancing

#2: SmartNIC overload

Google Ads

Play

YouTube

SKYDE

Play

SharePoint

Fights

Office 365

SharePoint

Fights

Corta

XEON

Inside

#1:Addressing and load balancing

#2: SmartNIC overload

#3: non-uniform communication costs

Outline

- √ Three Challenges of integrating SmartNICs
- √ E3 design
- √ Energy efficiency, cost & latency evaluation
- √ Conclusion

E3: a microservice execution platform

- Follows design philosophies of Azure Service Fabric [Eurosys'18]
- Adds three techniques to support SmartNICs
- ECMP-based load balancing
- Load-aware cluster manager
- Communication-aware microservice placement

E3 technique #1: ECMP-based load balancing

An intra-server addressing and load-balancing mechanism

E3 technique #1: ECMP-based load balancing

An intra-server addressing and load-balancing mechanism

E3 technique #2: load-aware cluster manager

- Purpose: avoid host starvation
- Microservice interference with NIC firmware on SmartNIC memory/cache
- **Solution:**
- Monitor ingress packet queue depth of SmartNIC, microservice CPU intensity
- If above threshold, migrate CPU-intensive microservice

E3 technique #2: load-aware cluster manager

- Purpose: avoid host starvation
- Microservice interference with NIC firmware on SmartNIC memory/cache
- **Solution:**
- Monitor ingress packet queue depth of SmartNIC, microservice CPU intensity
- If above threshold, migrate CPU-intensive microservice

E3 technique #2: load-aware cluster manager

- Purpose: avoid host starvation
- Microservice interference with NIC firmware on SmartNIC memory/cache
- **Solution:**
- Monitor ingress packet queue depth of SmartNIC, microservice CPU intensity
- If above threshold, migrate CPU-intensive microservice

Our mechanism achieves 5.9x better energy-efficiency and 27.7% latency reduction

- Service Fabric cluster scheduler
 - √ Simulated annealing
 - √ Constraints
 - Static node information
 - # of CPUs, memory capacity, ...
 - Runtime statistics of each computing node/microservice
 - CPU, network, memory utilization, ...
 - X Ignores communication latency

- Service Fabric cluster scheduler
- √ Simulated annealing
- √ Constraints
- Static node information
- # of CPUs, memory capacity, ...
- Runtime statistics of each computing node/microservice
- CPU, network, memory utilization, ...

X Ignores communication latency

- * E3: hierarchical, communication-aware microservice placement (HCM)
 - √ Organize computing nodes into levels of communication distance
- ✓ Place communicating microservices close to each other
- √ Hierarchical -> prunes search space

- HCM algorithm input
 - ✓ G: microservice DAG
 - √ V_src: source microservice node of the DAG
- √ T: server cluster topology graph
- HCM performs a breadth-first traversal of G
- √ Map microservices to a cluster computing node in T

Subset of Service Fabric

- HCM algorithm input
 - √ G: microservice DAG
- √ V_src: source microservice node of the DAG
- √ T: server cluster topology graph
- HCM performs a breadth-first traversal of G
- √ Map microservices to a cluster computing node in T
- 4 layers in a single rack
 - L1: the same computing node as V

- HCM algorithm input
 - √ G: microservice DAG
 - √ V_src: source microservice node of the DAG
- √ T: server cluster topology graph
- ❖ HCM performs a breadth-first traversal of G
 - √ Map microservices to a cluster computing node in T
- 4 layers in a single rack
 - L1: the same computing node as V
 - L2: another computing node on the same server

- HCM algorithm input
 - √ G: microservice DAG
- √ V_src: source microservice node of the DAG
- √ T: server cluster topology graph
- ❖ HCM performs a breadth-first traversal of G
 - √ Map microservices to a cluster computing node in T
- 4 layers in a single rack
 - L1: the same computing node as V
 - L2: another computing node on the same server
 - L3: a SmartNIC computing node on another servers

- HCM algorithm input
 - √ G: microservice DAG
- √ V_src: source microservice node of the DAG
- √ T: server cluster topology graph
- ❖ HCM performs a breadth-first traversal of G
 - √ Map microservices to a cluster computing node in T
- 4 layers in a single rack
 - L1: the same computing node as V
 - L2: another computing node on the same server
 - L3: a SmartNIC computing node on another servers
 - L4: a host computing node on other servers

Subset of Service Fabric

- HCM algorithm input
 - √ G: microservice DAG
- ✓ *V_src*: source microservice node of the DAG
- √ T: server cluster topology graph
- ❖ HCM performs a breadth-first traversal of G
 - √ Man microservices to a cluster computing node in T
 - Compared with Service Fabric, HCM improves energy efficiency by 16.2% and reduces the latency by 13.0%
 - L2: another computing node on the same server
 - L3: a SmartNIC computing node on another servers
 - L4: a host computing node on other servers

Subset of Service Fabric

Outline

- √ Three Challenges of integrating SmartNICs
- √ E3 design
- √ Energy efficiency, cost & latency evaluation
- √ Conclusion

Energy efficiency under peak utilization

- ❖ 3 Single-SmartNIC servers vs. 3 beefy servers
 - ✓ Deploy each application via E3, maximize client load without overload
 - √ Measure cluster throughput & power

Average/tail latency under peak utilization

- ❖ 3 Single-SmartNIC servers vs. 3 beefy servers
- √ Up to 4% latency cost

$$\frac{Throughput \times T}{CAPEX + Power \times T \times Electricity}$$

 $Throughput \times T$

 $CAPEX + Power \times T \times Electricity$

$$Throughput \times T$$

 $CAPEX + Power \times T \times Electricity$

Total cost of ownership in time

$$Throughput \times T$$

$$CAPEX + Power \times T \times Electricity$$

Cluster cost efficiency over time of ownership - best case

- Multi-SmartNIC cluster: up to 1.9x more cost efficient after 5 years
- √ RTA-SHM contains both compute and IO-intensive microservices

Cluster cost efficiency over time of ownership - worst case

- Wimpy cluster is most cost efficient when all microservices are IO-intensive
- Multi-SmartNIC cluster ranks second (14.1% less after 5 years)

Other evaluations

- **E3** power proportionality
- * E3 control-plane/data-plane mechanisms perform @ scale
- √ Mechanism scalability
- √ Tail latencies
- √ Energy efficiency under power budgets

Conclusion

- SmartNICs are heterogenous computing units on the data path
- * E3 enables energy-efficient microservices on SmartNIC-servers
 - √ ECMP-based load balancing
 - √ Load-aware cluster manager
 - √ Communication-aware microservice placement
- * Real system based energy efficiency evaluation
- √ Compare with homogenous and heterogeneous clusters
- √ SmartNIC-servers win:
- Up to 3x better energy efficiency
- Up to 4% latency cost
- Up to 1.9x better cost efficiency after 5 years of ownership