Litz: Elastic Framework for High-Performance Machine Learning

Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang Chen, Qirong Ho, Garth A. Gibson, Eric P. Xing

Petuum, Inc., Carnegie Mellon University, Beihang University, Vector Institute

USENIX Annual Technical Conference (ATC) 2018
Machine Learning (ML) in Clouds & Data Centers
Machine Learning (ML) in Clouds & Data Centers

With advancements in distributed ML:

✔ Better scalability
✔ Higher throughput
✔ Faster convergence

But implementations are often:

✗ Inelastic

Jobs cannot elastically scale out or in.
Why Inelastic?

Efficient distributed ML training need flexible control over their execution.

1. Controlling placement of mutable state (Stateful Workers)
2. Scheduling tasks at the application level (Model Scheduling)
3. Relaxing consistency of shared-memory (Relaxed Consistency)
Why Inelastic?

Efficient distributed ML training need flexible control over their execution.

1. Stateful Workers
2. Model Scheduling
3. Relaxed Consistency

Difficult to implement using existing big data frameworks.
Litz Elastic ML Framework

Goal: design framework that balance…
Litz Elastic ML Framework

Applications on Litz can:
1. Complete faster by scaling out.
2. Quickly scale in when requested.
3. Have competitive performance with non-elastic systems.
Background: Parameter Server (PS)

Litz builds upon the popular Parameter Server (PS) architecture.

NIPS ’12, NIPS ’13, OSDI ’14, SoCC ’15
Background: Stateful Workers

ML applications may co-locate mutable state with training data to improve locality of access (Stateful Workers).

Cluster assignments, parameters in non-parametric models, etc.
Background: Model Scheduling

ML applications may schedule update computations according to dependency structures in the model (model scheduling).

Can greatly improve convergence rate of models (EuroSys ’16)
Background: Model Scheduling

Example: DSGD (KDD ‘11)

Only schedules non-overlapping parameter updates in parallel.

Also: dynamic scheduling, eg. parallel coordinate descent
Background: Relaxed Consistency

Workers may access values in parameter server using a weaker consistency model (relaxed consistency).

Reduces cost of synchronization to achieve higher throughput.
Background: Relaxed Consistency

Example: Stale-Synchronous Parallel (NIPS ‘13)

Workers can use stale parameters (up to a given staleness limit).

Also: staleness-aware algorithms, eg. AdaptiveRevision (NIPS ‘14)
Challenges for Elastic ML Framework

<table>
<thead>
<tr>
<th>Stateful Workers</th>
<th>Model Scheduling</th>
<th>Relaxed Consistency</th>
</tr>
</thead>
</table>

Managing application-defined worker state.
- Re-balance across a different number of nodes.

Supporting application-level model scheduling.
- Provide flexible tools for task scheduling.
- Hide away cluster resource details (e.g., nodes joining/leaving the active job).

Supporting relaxed consistency models.
- Elastic scaling should not rely on synchronous execution.
Applying **over-partitioning** to the parameter server architecture.
Over-partitioning

Partition data and parameters across many *logical* workers (*Executors*) and *logical* parameter servers (*PSshards*).
Over-partitioning

Total number of **Executors** and **PSshards** doesn’t change, but can be re-balanced between physical nodes when resource availability changes.
Over-partitioning

Total number of **Executors** and **PSshards** doesn’t change, but can be re-balanced between physical machines when their availability changes.

Automatically migrated by elastic execution system
Over-partitioning

Advantages:

• App can define arbitrary state.
 • Treated as black box by the execution system.

• App does not need to handle addition/removal of workers.
 • Tasks can be scheduled assuming a fixed number of Executors.
Over-partitioning

Caveat:
More Executors and PSshards are needed to achieve:
• Higher max parallelism.
• Better load balancing.
Worse performance overhead for execution system.

Major goal: Mitigate the performance overhead of over-partitioning.
Litz Elastic Framework

Decompose update computations into **micro-tasks**, which are scheduled and executed by the application using an **event-driven** API.
Event-Driven Programming Model

Micro-task: app-defined short-lived task.

1. Runs on a single Executor.
 - Can access local state and training data.
2. Can read values from PS.
3. Can submit updates to PS.

- Application provides *task function*:
 - `RunTask(args)`
- PS access provided by Litz framework:
 - `PSGet(key), PSUpdate(key, update)`
Event-Driven Programming Model

Driver: micro-task scheduler.

- Application provides *scheduling functions*:
 - HandleTaskCompletion(result)
 - DispatchInitialTasks()

- Litz framework provides dispatch function:
 - DispatchTask(executor, args)
Event-Driven Programming Model

Execution System

1. Invoke scheduling function
2. Dispatch micro-tasks
3. Send micro-task to executor
4. Invoke task function
5. Run micro-task w/ PS access
6. Send micro-task result to driver

Application

- Execution system can migrate Executors and PSshards between invoking app-defined functions.
- Elastic scaling transparent to app.
- Keeping micro-tasks short gives frequent chances to re-balance.
- Better response time for elastic scaling events.
Litz Elastic Framework

Over-Partitioning + Event-Driven Programming Model

- Apps have flexible control over their state and task scheduling.
- Litz can automatically re-balance workload during elastic scaling.

However...

Over-partitioning + Micro-tasks = High Overhead
- Fetching parameters creates high communication load.
- Want workers to cache and re-use parameters.
- How to decide when to use cached parameters?
- Too many dependencies between micro-tasks to specify!
Task-Driven Consistency Model

Idea

• Since the execution system invokes app-defined functions, it can observe how the application makes scheduling decisions.

• Automatically infer causal relationships between micro-tasks based on:
 1. When the application dispatches a micro-task.
 2. When the application is notified of a micro-task’s completion.
Task-Driven Consistency Model

If...

- **App dispatches micro-task B after being notified of micro-task A’s completion.**

 Then Litz infers...

 - Completion of A *may have caused* the dispatch of B

 And Litz ensures...

 - B will observe *all* of the updates made by A

- **App dispatches micro-task B before being notified of micro-task A’s completion.**

 Then Litz infers...

 - Completion of A *did not cause* the dispatch of B

 And Litz ensures...

 - B may observe *some, all, or none* of the updates made by A

(1) **Strong ordering guarantee,** needed for app-level model scheduling.

(2) **Intentionally weak,** allows execution system to automatically use cached parameter values.
Examples

Scheduling micro-task graphs

On job start: dispatch all micro-tasks with no dependencies.

On micro-task completion: dispatch all micro-tasks whose dependencies are now satisfied.

Ensures each micro-task observes all PS updates made by micro-tasks it depends on.

Stale-synchronous parallel

On job start: dispatch all micro-tasks in first \(s+1 \) iterations, where \(s \) is the staleness limit.

On micro-task completion: if iter \(i \) completed, dispatch all micro-tasks in iteration \(i+s+1 \).

Micro-tasks in each iteration may observe some, all, or none of the updates made by the micro-tasks in the previous \(s \) iterations.

Micro-tasks may re-use cached parameters fetched within the previous \(s \) iterations.
Task-Driven Consistency Model

A parameter cache can be implemented efficiently in the execution system.

1. Maintain a version number, increment each time a micro-task completes.
2. Tag each micro-task with the version at the time it was dispatched.
3. Tag each cached parameter with the version at the time it was fetched.
4. Re-use cached parameter value if its version is at least the micro-task version.
Elastic Execution System

- Decouples ML application from underlying cluster environment.
- Provides flexible programming tools for distributed ML.

- Gives visibility and control over how application is executed.
- Execution system can provide transparent elasticity and efficient execution.
Elastic Execution System

Our C++ implementation:

Elastic scaling:
• Migrate Executors/PSshards to new nodes when added.
• Migrate Executors/PSshards from existing nodes when requested.
• Static load balancing strategy (balanced number of Executors/PSshards).

Optimizations:
• Parameter caching (according to task-based consistency model).
• Update aggregation (combine updates before sending to PS).
• Co-operative multitasking between Executors.
Evaluation

1. Over-partitioning
 • How much performance overhead?

2. Elastic scaling
 • Does scaling out help?
 • How quickly to scale in?

3. Performance
 • How fast compared to state-of-the-art non-elastic systems?
Evaluation: Applications

Multinomial Logistic Regression (MLR)
- Multiclass classification
- Gradient-based optimization
- Uses relaxed consistency
- Workers are stateless
- Dataset: ImageNet 81GB

Latent Dirichlet Allocation (LDA)
- Topic modeling
- Sampling-based approximation
- Uses model scheduling
- Workers are stateful
- Dataset: ClueWeb 88GB
Performance Overhead of Over-partitioning

Setup: fix number of physical nodes, increase number of Executors.

- **MLR on 4 physical nodes**
 - Time/Epoch (s) vs Executors/Thread
 - 1.1x runtime

- **LDA on 12 physical nodes**
 - Time/Epoch (s) vs Executors/Thread
 - 1.2x runtime

Baseline number of Executors saturates available physical cores.

Benefit: potential to scale out to 16x as many nodes when available.
Does scaling out result in faster jobs?

Not obvious! ie. if scaling out takes too long, or if system is not scalable.

Setup: scale out to more nodes during job, compare with static execution.

MLR: scale out 4 to 8 nodes

- 22% faster completion by scaling out.

LDA: scale out 12 to 24 nodes

- 27% faster completion by scaling out.
Speed-up from Elastic Scale-out

Setup: compare with ideal scale-out, calculated from static pre-scaling and post-scaling experiments assuming instantaneous re-balancing.

- **MLR:** scale out 4 to 8 nodes
 - 1.01x ideal

- **LDA:** scale out 12 to 24 nodes
 - 1.05x ideal
Eviction Latency from Elastic Scale-in

Can nodes be released quickly upon request?

Setup: request half of the nodes, measure time until they are released.

<table>
<thead>
<tr>
<th>Application</th>
<th>Scaling</th>
<th>Time to Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLR</td>
<td>8 to 4</td>
<td>2.5 sec</td>
</tr>
<tr>
<td>LDA</td>
<td>24 to 12</td>
<td>43 sec</td>
</tr>
</tbody>
</table>

MLR: stateless Executors, only PSshards to be transferred.

LDA: 55GB of Executor state needs to be transferred.
Non-Elastic Performance

How does Litz perform in non-elastic settings?

Setup: compare with same applications on non-elastic ML systems.

MLR compare with Bosen (SoCC ’15), for stale-synchronous parallel apps.

- Litz
- Bosen

MLR with SSP, staleness = 2

8x faster

LDA compare with STRADS (EuroSys ’16), for model scheduling apps.

- Litz
- STRADS

LDA with block-partitioned model scheduling

6% slower
Summary

Tackle elasticity for distributed ML using three techniques:

1. **Over-partitioning in Parameter Server**
 - Automatically re-balance application state.

2. **Event-driven Programming Model**
 - Quick response to elastic scaling events.

3. **Task-driven Consistency Model**
 - Mitigates performance overhead of the above.

The Litz framework:
- Supports stateful workers, model scheduling, relaxed consistency.
- Enables elastic execution without sacrificing performance.
Thank you!