STMS: Improving MPTCP
Throughput Under
Heterogenous Networks

Hang Shit, Yong Cuit, Xin Wang?, Yuming Hu?!, Minglong Dail,
Fanzhao Wang?, Kai Zheng?

1 Tsinghua University, 2Stony Brook University,
SHuawei Technologies

STONY I
BRQ\SK @'é

UNIVERSITY HUAWEI

Background

AMutipath TCP is widely adopted to aggregate bandwidth of
multiple interfaces of mobile devices

ATransparent to both application and middlebox

AHowever, mobile WiFi and LTE are heterogeneous:
A20% of top 500 sites has RTT difference > 45ms, as high as 134ms!

IMobicom 16, Understand Multipath performance on Mobile devices

Big host buffer requirement

ADefault scheduler: send packets through fastest available path

Sender T=1s Receiver

send_una ‘
Fast path: RTT = 0s, bandwidth = 1 . -

packet/s

Slow path: RTT = 4s, bandwidth = 1 .

nacket/s

unsent/received

Big host buffer requirement

ADefault scheduler: send packets through fastest available path

Sender T=2s Receiver

send_una

Fast path: RTT = 0s, bandwidth = 1 .
packet/s

Slow path: RTT = 4s, bandwidth = 1 .
packet/s

unsent/received

Big host buffer requirement

ADefault scheduler: send packets through fastest available path

APacket sent from slow path arrive late. Can not submit to
application. Need more buffer.

Sender T =3s Receiver

send_una Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received

Host buffer is not the only bottleneck

A TC running in OpenWrt router to regulate bandwidth and RTT
A iPerf to measure the throughput (send packets continuously)
A Bandwidth = 30Mbps, loss rate = 0.01%

A Host buffer big enough(6M)

RTT 20ms vs 200ms 20ms vs 20ms
RTT (added by TC)

Aggregated Throughput 33.1 56.5 I I
Fast path Throughput 12.1 28.3 — [-1
(Mbps) (N N]

Fast pathLoss rate (%) 0.05 0.01

Burst sending pattern

A Fast path sends packets in burst.

90

| —— fast send
————— slow receive

-

12.3
Time (s)

12.2

20ms vs 200ms

12.4

12.5

50

B
o

Packets/10ms (MSS)

w
o

N
o

=
o

—— fast send

| - slow receive

20ms vs 20ms

Big in-network buffer requirement

A Bigger in-network buffer is needed to tolerant the burst.

A When in-network buffer is limited, MPTCP can not compete

against single path TCP. (More packet loss)

MPTCP
In- network MPTCP Fasoverall TP SPTCP Utilization
buffer/K path /Mbps /Mbps fast/Mbps of fast path

30 12.1 31 28.4 42.61Y9
60 22 36 28.4 77.469
90 24.9 40.2 28.4 87.68Y%

150 28.3 46.3 28.4 99.659

B 30K
B 90K
s 150K

20-200

MPTCP 2 level sequence number

A Separate send window of MP level and subflow level
A 2 level sequence number and cumulative ACK.

Sender-MP Sender-FP Receiver

subflow: 201
Fast path: RTT = 0s, bandwidth =2

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

. unsent/received

bflow: 101

Burst sending of fast path

A When ACK of slow path returns, MP-level send window slides,
fill the CWND space of fast path.

Sender-MP Sender-FP Receiver

subflow: 201

Fast path: RTT = 0s, bandwidth = 2
packet/s

unsent/received

Slow path: RTT = 4s, bandwidth = 1
packet/s

bflow: 101

MPTCP-level window sliding

A the left edge of MP send window almost only slides after

receiving ACK from slow path.

20750
20500+

2 20250

AV

& 20000-

<

® 19750
a 19500
19250
19000 1

5.8

Data ACK

jump N

50 6.0 6.1 6.2

Time (s)
20ms vs 200ms

6.3

27000 1
26750+
26500 -
o
< 26250+

AV

Q 26000
£ 25750
2 25500
25250-
25000-
5.8

5.9

6.0 6.1

Time (s)

20ms vs 20ms

6.2

6.3

Send window space (MSS)

CWND free space of fast path

A Break the ACK clocking of single TCP.

1001

80 1

60 1

40 1

20

O I

5.8

5.9

6.0 6.1
Time (s)
20ms vs 200ms

6.2

6.3

N W g Ul (@)
o o o o o

Send window space (MSS)
=
o

5.9 6.0 6.1 6.2 6.3
Time (s)

o

w
[o°)

20ms vs 20ms

Solution space

A Retransmission and penalization! can alleviate host buffer
problem. Can not solve in-network buffer problem

A Pacing can solve in-network buffer problem.
A TC pacing, need set the pacing rate manually
A BBR congestion control, not fair with single path TCP

A
A

A

1 NSDI 12: How hard can it be? designing and implementing a deployable multipath tcp

Out-of-order sending

Sender T= Receive
1s r
send_una H
Fast path: RTT = 0s, bandwidth = 1
‘ \ packet/s

Slow path: RTT = 4s, bandwidth = 1 _
packet/s unsent/received

Out-of-order sending

Sender T= Receive
2S r

send_una Fast path: RTT = 0s, bandwidth = 1
packet/s

Slow path: RTT = 4s, bandwidth = 1 _
packet/s unsent/received

Out-of-order sending

Sender T= Receive
3s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

send_una

Slow path: RTT = 4s, bandwidth = 1
packet/s unsent/received

Out-of-order sending

Sender T= Receive
4s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received

send_una

Out-of-order sending

Sender T= Receive
4s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s unsent/received

send_una

Out-of-order sending algorithm
e

P_next
~or fast path, send unsent[0] buffer

~or slow path, send unsent|Gap|
_eave Gap packets for fast path to send
A Out-of-order sending -> in-order arrival

A OQa(w) 00Qa WwE U

Do To I

Need more send buffer?

A Seems like moving Gap from receiver to sender?

A However, send window can slide faster. No duplicate ACK.
Each ACK can acknowledge some packets.

A Actually, out-of-order sending can always get optimal
throughput across all range of host buffer sizes.

How to get GAP value

A Naive way: Calculate from path condition measurement.
A0Hn b Hhe QL MBI QVOQA@M VOQAD) ©
A Hard to measure. Need symmetric forward delay.

A

A No more options. Compatible with existing MPTCP
protocol. Get feedback from existing options.
A Deployable. Modify sender side only

Key Insight

A Out-of-order arrival generate burst MP-level ack
A Gap = Number of bursting MP-level ACKs

Sender-MP Sender-FP T=1s Receiver

subflow: 201
Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

. unsent/received

bflow: 101

Key Insight

A Out-of-order arrival generate burst MP-level ack
A Gap = Number of burst MP-level ACKs

Sender-MP Sender-FP T=2s Receiver

subflow: 201

Fast path: RTT = 0s, bandwidth = 2
packet/s

unsent/received

Slow path: RTT = 4s, bandwidth = 1
packet/s

bflow: 101

Gap adjustment

A Burst MP-level ACK(data ACK)

A Packet[send _una] sent from slow path, Gap += delta[data ack] - 2
A Packet[send una] sent from fast path, Gap -= delta[data_ack] i 2

A Limit the frequency of adjustment to avoid repeated adjustment.

A EWMA of delta over adjustment interval.

Implementation and Evaluation

A
A

A (Early completion first.
Sending tail packets out-of-orderly.)

A Controlled lab and real-world.
A Varying static and dynamic network environment.
A Varying in-network buffer and host buffer.

Microbenchmarks

A Reduce out-of-order latency: t(submitted) i t(arrival)

ooo-latency (ms)

un
o

N
o

W
o

N
o

-
o

o

"N

[Default
VA ECF

| 23 STMS-A

1 STMS-C

20 50

100
RTT s (ms)

150

200

