
STMS: Improving MPTCP
Throughput Under

Heterogenous Networks
Hang Shi1, Yong Cui1, Xin Wang2, Yuming Hu1, Minglong Dai1,

Fanzhao Wang3, Kai Zheng3

1 Tsinghua University, 2Stony Brook University,
3Huawei Technologies

Background

• Mutipath TCP is widely adopted to aggregate bandwidth of
multiple interfaces of mobile devices

• Transparent to both application and middlebox

• However, mobile WiFi and LTE are heterogeneous:
• 20% of top 500 sites has RTT difference > 45ms, as high as 134ms1

1Mobicom 16, Understand Multipath performance on Mobile devices

• Default scheduler: send packets through fastest available path

Big host buffer requirement

1 -> S

2 -> F

Sender ReceiverT = 1s

F
Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

• Default scheduler: send packets through fastest available path

Big host buffer requirement

1 -> S

2 -> F

3 -> S

4 -> F

Sender ReceiverT = 2s

F

F

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

• Default scheduler: send packets through fastest available path

• Packet sent from slow path arrive late. Can not submit to
application. Need more buffer.

Big host buffer requirement

1 -> S

2 -> F

3 -> S

4 -> F

5 -> S

6 -> F

Sender ReceiverT = 3s

S

F

F

F

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Host buffer is not the only bottleneck

• TC running in OpenWrt router to regulate bandwidth and RTT

• iPerf to measure the throughput (send packets continuously)

• Bandwidth = 30Mbps, loss rate = 0.01%

• Host buffer big enough(6M)

RTT 20ms vs 200ms 20ms vs 20ms

Aggregated Throughput
(Mbps)

33.1 56.5

Fast path Throughput
(Mbps)

12.1 28.3

Fast path Loss rate (%) 0.05 0.01

RTT (added by TC)

Burst sending pattern

• Fast path sends packets in burst.

20ms vs 200ms 20ms vs 20ms

Big in-network buffer requirement

• Bigger in-network buffer is needed to tolerant the burst.

• When in-network buffer is limited, MPTCP can not compete
against single path TCP. (More packet loss)

In-network

buffer/K

MPTCP Fast

path /Mbps

MPTCP

overall TP

/Mbps

SPTCP

fast/Mbps

Utilization

of fast path

30 12.1 31 28.4 42.61%

60 22 36 28.4 77.46%

90 24.9 40.2 28.4 87.68%

150 28.3 46.3 28.4 99.65%

MPTCP 2 level sequence number

(1, 101) -> S

(2, 201) -> F

(3, 202) -> F

Sender-MP Receiver

F

F
Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) -> F

(3, 202) -> F

Sender-FP

• Separate send window of MP level and subflow level
• 2 level sequence number and cumulative ACK.

Burst sending of fast path

(1, 101) -> S

(2, 201) -> F

(3, 202) -> F

(4, 102) -> S

(5, 203) -> F

(6, 204) -> F

Sender-MP Receiver

S

F

F

F

F

Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) -> F

(3, 202) -> F

(5, 203) -> F

(6, 204) -> F

Sender-FP

• When ACK of slow path returns, MP-level send window slides,
fill the CWND space of fast path.

MPTCP-level window sliding

• the left edge of MP send window almost only slides after
receiving ACK from slow path.

20ms vs 200ms 20ms vs 20ms

CWND free space of fast path

• Break the ACK clocking of single TCP.

20ms vs 200ms 20ms vs 20ms

Solution space

• Retransmission and penalization1 can alleviate host buffer
problem. Can not solve in-network buffer problem

• Pacing can solve in-network buffer problem.
• TC pacing, need set the pacing rate manually
• BBR congestion control, not fair with single path TCP

• Our solution: Dynamically out-of-order sending for in-order arrival
• Solve both host buffer and in-network buffer.
• Congestion control agnostic.

1 NSDI 12: How hard can it be? designing and implementing a deployable multipath tcp

Out-of-order sending

1 -> F

4 -> S

Sender Receive

r

T =

1s

F

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 -> F

2 -> F

4 -> S

6 -> S

Sender Receive

r

T =

2s

F

F
Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una
sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 -> F

2 -> F

3 -> F

4 -> S

6 -> S

8 -> S

Sender Receive

r

T =

3s

F

F

F

S

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 -> F

2 -> F

3 -> F

4 -> S

5 -> F

6 -> S

8 -> S

Sender Receive

r

T =

4s

F

F

F

S

F

S

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 -> F

2 -> F

3 -> F

4 -> S

5 -> F

6 -> S

7 -> F

8 -> S

Sender Receive

r

T =

4s

F

F

F

S

F

S

F

S

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending algorithm

in flight slowfast

P_next

Gap

buffer• For fast path, send unsent[0]

• For slow path, send unsent[Gap]

• Leave Gap packets for fast path to send

• Out-of-order sending -> in-order arrival

•
𝐺𝑎𝑝

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑓𝑎𝑠𝑡)
+ 𝐷𝑒𝑙𝑎𝑦 𝑓𝑎𝑠𝑡 = 𝐷𝑒𝑙𝑎𝑦(𝑠𝑙𝑜𝑤)

Need more send buffer?

• Seems like moving Gap from receiver to sender?

• However, send window can slide faster. No duplicate ACK.
Each ACK can acknowledge some packets.

• Actually, out-of-order sending can always get optimal
throughput across all range of host buffer sizes.

How to get GAP value

• Naive way: Calculate from path condition measurement.
• 𝐺𝑎𝑝 = 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑓𝑎𝑠𝑡 ∗ (𝐷𝑒𝑙𝑎𝑦 𝑠𝑙𝑜𝑤 − 𝐷𝑒𝑙𝑎𝑦 𝑓𝑎𝑠𝑡)
• Hard to measure. Need symmetric forward delay.

• Our approach: Feedback based adjustment.
• No more options. Compatible with existing MPTCP

protocol. Get feedback from existing options.
• Deployable. Modify sender side only

Key insight

(1, 101) -> S

(2, 201) -> F

(3, 202) -> F

Sender-MP ReceiverT = 1s

F

F
Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) -> F

(3, 202) -> F

Sender-FP

• Out-of-order arrival generate burst MP-level ack
• Gap = Number of bursting MP-level ACKs

Key insight

(1, 101) -> S

(2, 201) -> F

(3, 202) -> F

(4, 102) -> S

(5, 203) -> F

(6, 204) -> F

Sender-MP ReceiverT = 2s

S

F

F

F

F

Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) -> F

(3, 202) -> F

(5, 203) -> F

(6, 204) -> F

Sender-FP

• Out-of-order arrival generate burst MP-level ack
• Gap = Number of burst MP-level ACKs

Gap adjustment

• Burst MP-level ACK(data ACK)

• Packet[send_una] sent from slow path, Gap += delta[data_ack] - 2

• Packet[send_una] sent from fast path, Gap -= delta[data_ack] – 2

• Limit the frequency of adjustment to avoid repeated adjustment.

• EWMA of delta over adjustment interval.

Implementation and Evaluation

• Based on Linux kernel MPTCP v0.92

• 2 variants: gap-calculation and gap-adjustment.

• Compared with Default and ECF(Early completion first.
Sending tail packets out-of-orderly.)

• Controlled lab and real-world.

• Varying static and dynamic network environment.

• Varying in-network buffer and host buffer.

Microbenchmarks

• Reduce out-of-order latency: t(submitted) – t(arrival)

• Varying receive buffer and send buffer size.

Microbenchmarks

Reduce burst on the fast path

• CWND freespace when
receiving ACK.

• iPerf will fill the freespace.

• Big freespace -> burst
sending -> big in-network
buffer requirement.

Gap adjustment is dynamic

• Change the network condition suddenly.

Macrobenchmarks

• 25% improvement when in-network buffer is limited.

𝑆𝑇𝑀𝑆 − 𝐴

𝐷𝑒𝑓𝑎𝑢𝑙𝑡

Host buffer

• 20% improvement when receive/send buffer is limited.

𝑆𝑇𝑀𝑆 − 𝐴

𝐷𝑒𝑓𝑎𝑢𝑙𝑡

Dynamic network condition

• Change bandwidth(left) and latency(right) randomly

Real-world evaluation

• Lab to Alibaba Cloud.

• No bandwidth regulation.

• Varying latency.

• Download 200MB file.

BD(Mbps) Latency(ms)

WiFi 40 50

LTE 30 70

Better

Conclusion

• Discover the in-network buffer problem of MPTCP.

• Leverage data ACK and subflow ACK for dynamically Out-of-
order sending.

• Improve the throughput of MPTCP when RTTs are asymmetric
and especially when the buffer is limited.

Thanks

