
STMS: Improving MPTCP
Throughput Under

Heterogenous Networks
Hang Shi1, Yong Cui1, Xin Wang2, Yuming Hu1, Minglong Dai1,

Fanzhao Wang3, Kai Zheng3

1 Tsinghua University, 2Stony Brook University,
3Huawei Technologies

Background

ÅMutipath TCP is widely adopted to aggregate bandwidth of
multiple interfaces of mobile devices

ÅTransparent to both application and middlebox

ÅHowever, mobile WiFi and LTE are heterogeneous:
Å20% of top 500 sites has RTT difference > 45ms, as high as 134ms1

1Mobicom 16, Understand Multipath performance on Mobile devices

ÅDefault scheduler: send packets through fastest available path

Big host buffer requirement

1 - > S

2 - > F

Sender ReceiverT = 1s

F
Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

ÅDefault scheduler: send packets through fastest available path

Big host buffer requirement

1 - > S

2 - > F

3 - > S

4 - > F

Sender ReceiverT = 2s

F

F

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

ÅDefault scheduler: send packets through fastest available path

ÅPacket sent from slow path arrive late. Can not submit to
application. Need more buffer.

Big host buffer requirement

1 - > S

2 - > F

3 - > S

4 - > F

5 - > S

6 - > F

Sender ReceiverT = 3s

S

F

F

F

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Host buffer is not the only bottleneck

ÅTC running in OpenWrt router to regulate bandwidth and RTT

ÅiPerf to measure the throughput (send packets continuously)

ÅBandwidth = 30Mbps, loss rate = 0.01%

ÅHost buffer big enough(6M)

RTT 20ms vs 200ms 20ms vs 20ms

Aggregated Throughput
(Mbps)

33.1 56.5

Fast path Throughput
(Mbps)

12.1 28.3

Fast pathLoss rate (%) 0.05 0.01

RTT (added by TC)

Burst sending pattern

ÅFast path sends packets in burst.

20ms vs 200ms 20ms vs 20ms

Big in-network buffer requirement

ÅBigger in-network buffer is needed to tolerant the burst.

ÅWhen in-network buffer is limited, MPTCP can not compete
against single path TCP. (More packet loss)

In- network

buffer/K

MPTCP Fast

path /Mbps

MPTCP

overall TP

/Mbps

SPTCP

fast/Mbps

Utilization

of fast path

30 12.1 31 28.4 42.61%

60 22 36 28.4 77.46%

90 24.9 40.2 28.4 87.68%

150 28.3 46.3 28.4 99.65%

MPTCP 2 level sequence number

(1, 101) - > S

(2, 201) - > F

(3, 202) - > F

Sender-MP Receiver

F

F
Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) - > F

(3, 202) - > F

Sender-FP

ÅSeparate send window of MP level and subflow level
Å2 level sequence number and cumulative ACK.

Burst sending of fast path

(1, 101) - > S

(2, 201) - > F

(3, 202) - > F

(4, 102) - > S

(5, 203) - > F

(6, 204) - > F

Sender-MP Receiver

S

F

F

F

F

Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) - > F

(3, 202) - > F

(5, 203) - > F

(6, 204) - > F

Sender-FP

ÅWhen ACK of slow path returns, MP-level send window slides,
fill the CWND space of fast path.

MPTCP-level window sliding

Åthe left edge of MP send window almost only slides after
receiving ACK from slow path.

20ms vs 200ms 20ms vs 20ms

CWND free space of fast path

ÅBreak the ACK clocking of single TCP.

20ms vs 200ms 20ms vs 20ms

Solution space

ÅRetransmission and penalization1 can alleviate host buffer
problem. Can not solve in-network buffer problem

ÅPacing can solve in-network buffer problem.
Å TC pacing, need set the pacing rate manually
ÅBBR congestion control, not fair with single path TCP

ÅOur solution: Dynamically out-of-order sending for in-order arrival
ÅSolve both host buffer and in-network buffer.
ÅCongestion control agnostic.

1 NSDI 12: How hard can it be? designing and implementing a deployable multipath tcp

Out-of-order sending

1 - > F

4 - > S

Sender Receive

r

T =

1s

F

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 - > F

2 - > F

4 - > S

6 - > S

Sender Receive

r

T =

2s

F

F
Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una
sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 - > F

2 - > F

3 - > F

4 - > S

6 - > S

8 - > S

Sender Receive

r

T =

3s

F

F

F

S

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 - > F

2 - > F

3 - > F

4 - > S

5 - > F

6 - > S

8 - > S

Sender Receive

r

T =

4s

F

F

F

S

F

S

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending

1 - > F

2 - > F

3 - > F

4 - > S

5 - > F

6 - > S

7 - > F

8 - > S

Sender Receive

r

T =

4s

F

F

F

S

F

S

F

S

Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

send_una

sent, unacked

sent, acked

received

unsent/received

Out-of-order sending algorithm

in flight slowfast

P_next

Gap

bufferÅFor fast path, send unsent[0]

ÅFor slow path, send unsent[Gap]

ÅLeave Gap packets for fast path to send

ÅOut-of-order sending -> in-order arrival

Å ὈὩὰὥώὪὥίὸὈὩὰὥώίὰέύ

Need more send buffer?

ÅSeems like moving Gap from receiver to sender?

ÅHowever, send window can slide faster. No duplicate ACK.
Each ACK can acknowledge some packets.

ÅActually, out-of-order sending can always get optimal
throughput across all range of host buffer sizes.

How to get GAP value

ÅNaive way: Calculate from path condition measurement.
ÅὋὥὴὄὥὲὨύὭὨὸὬὪὥίὸzὈὩὰὥώίὰέύὈὩὰὥώὪὥίὸ
ÅHard to measure. Need symmetric forward delay.

ÅOur approach: Feedback based adjustment.
ÅNo more options. Compatible with existing MPTCP

protocol. Get feedback from existing options.
ÅDeployable. Modify sender side only

Key insight

(1, 101) - > S

(2, 201) - > F

(3, 202) - > F

Sender-MP ReceiverT = 1s

F

F
Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) - > F

(3, 202) - > F

Sender-FP

ÅOut-of-order arrival generate burst MP-level ack
ÅGap = Number of bursting MP-level ACKs

Key insight

(1, 101) - > S

(2, 201) - > F

(3, 202) - > F

(4, 102) - > S

(5, 203) - > F

(6, 204) - > F

Sender-MP ReceiverT = 2s

S

F

F

F

F

Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1

packet/s

data: 1

subflow: 101

data: 2

subflow: 201 sent, unacked

sent, acked

received

unsent/received

(2, 201) - > F

(3, 202) - > F

(5, 203) - > F

(6, 204) - > F

Sender-FP

ÅOut-of-order arrival generate burst MP-level ack
ÅGap = Number of burst MP-level ACKs

Gap adjustment

ÅBurst MP-level ACK(data ACK)

ÅPacket[send_una] sent from slow path, Gap += delta[data_ack] - 2

ÅPacket[send_una] sent from fast path, Gap -= delta[data_ack] ï2

ÅLimit the frequency of adjustment to avoid repeated adjustment.

ÅEWMA of delta over adjustment interval.

Implementation and Evaluation

ÅBased on Linux kernel MPTCP v0.92

Å2 variants: gap-calculation and gap-adjustment.

ÅCompared with Default and ECF(Early completion first.
Sending tail packets out-of-orderly.)

ÅControlled lab and real-world.

ÅVarying static and dynamic network environment.

ÅVarying in-network buffer and host buffer.

Microbenchmarks

Å Reduce out-of-order latency: t(submitted) ït(arrival)

