Application Memory Isolation on Ultra-Low-Power MCUs

Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob Sorber, David Kotz
Motivation

• Many wearables and IoT devices utilize ultra-low-power MCUs to achieve long battery life
Motivation

<table>
<thead>
<tr>
<th>Hardware Memory Isolation Techniques</th>
<th>MPU Supported</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Virtualization</td>
<td>✗</td>
<td>MPUs do not support virtual to physical address mapping like their MMU counterparts</td>
</tr>
<tr>
<td>2 Privilege Levels</td>
<td>✓</td>
<td>Some MPUs support setting privilege levels for memory segments, but this varies across chips and vendors</td>
</tr>
<tr>
<td>3 Read/Write/Execute Permissions</td>
<td>✓</td>
<td>All MPUs have the ability to set r/w/x permissions for memory segments, but the number of memory segments supported by the MPU varies across chips and vendors</td>
</tr>
</tbody>
</table>
Our Proposal

Utilize MPU to *relax* language restrictions and achieve *better* runtime performance
System Design: Platform

• Amulet Platform
 – Open-source software & hardware
 – Multi-application
 – Low-power MSP430 MCU
 – Memory isolation via language restrictions and runtime bounds checks
System Design: MPU Capabilities

- No privilege levels
- 3 variable size memory segments
- Only protects memory addresses above 0x4400
System Design: Memory Layout

- **Code & Data (HI-FRAM)**
- **Interrupt Vectors**
- **Code & Data (LO-FRAM)**
- **Stack (SRAM)**
- **MCU Configuration Registers**

What Can The MPU Protect?

- Happy face
- Sad face
System Design: Memory Violations

• Memory Accesses
 – Application data
 – Indirect function calls

• Context Switches
 – Passing a pointer to the OS
 – Changing return address
System Design: Memory Layout

- MPU Segment: 1
 Permissions: X
- MPU Segment: 2
 Permissions: RW
- MPU Segment: 3
 Permissions: NONE

Memory Layout:

- 0x00000: MCU Configuration Registers
- 0x01000: OS Stack (SRAM)
- 0x04400: OS Code
- 0x0FF80: Interrupt Vectors
- 0x10000: App 1 Code
- 0x23FFF: App N Code

Each section represents a different application or component with specific permissions.
System Design: MPU Model

- MPU prevents memory accesses and indirect calls **above** the current app’s memory space.
- Runtime software checks handle accesses and indirect calls **below** the current app’s memory space.
- Each application has its **own** stack.
- Runtime software checks verify return addresses.
System Design: AFT

• Amulet Firmware Toolchain (AFT)
 – Analyze,
 – Transform
 – Merge
 – Compile
Eval: Isolation Models

Amulet
- Compile-time memory isolation
- Single-stack
- No pointers
- No recursion
- Runtime bounds checks for array accesses

MPU
- Runtime memory isolation
- Multi-stack
- Pointers allowed
- Recursion allowed
- Runtime bounds checks for memory accesses (below)

Software-Only
- Runtime memory isolation
- Multi-stack
- Pointers allowed
- Recursion allowed
- Runtime bounds checks for memory accesses (above & below)
Eval: Simulation

• Simulated 9 applications from the Amulet suite using the Amulet Resource Profiler (ARP)
• Each application was simulated using
 – Amulet isolation
 – MPU isolation
 – Software-only isolation
Eval: Simulation Results

Memory_Models
- Feature Limited
- MPU
- Software Only

Billions of cycles

Battery life impact

Application
- BatteryMeter
- Clock
- FallDetection
- HR
- HR Log
- Pedometer
- Rest
- Sun
- Temperature

Billions of cycles

Battery life impact

13
Eval: Amulet Deployment Results

Memory_Models
- Feature Limited
- MPU
- Software Only

Percentage Slowdown

Activity Case 1
- Application

Activity Case 2
- Application

Quicksort
- Application
Summary

• MPU can provide performance benefits for applications with high frequency of memory accesses

• While our approach was not effective for apps with frequent context switches, our MPU approach had, for all applications, less than 0.5% battery impact
Application Memory Isolation on Ultra-Low-Power MCUs

Contact: Taylor.A.Hardin.GR@dartmouth.edu
Amulet Platform: amulet-project.org

This research results from a research program at the Institute for Security, Technology, and Society, supported by the NSF under award numbers CNS-1314281, CNS-1314342, CNS-1619970, and CNS-1619950. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the sponsors.