Placement of Virtual Containers on NUMA Systems

Justin Funston*, Maxime Lorrillere[†], and Alexandra Fedorova, University of British Columbia Baptiste Lepers, EPFL David Vengerov and Jean-Pierre Lozi, Oracle Labs Vivien Quéma, IMAG

> * Currently Huawei R&D † Currently Arista Networks

Motivation

3% of global electricity usage 86% used by servers+cooling

Ö

VS.

- Half as many servers!
- Half as much energy!
- Half as much infrastructure!
- Performance?

Background – "Module"

Background – NUMA Node

Background – Interconnect Topology

Assumptions

- The number of vCPUs a container uses is fixed
- Max of one vCPU per core
- Containers packed together should not interfere with each other – containers will not share NUMA nodes

Placements

Motivation – ua.B (scientific simulation)

Motivation – Spark Pagerank

Workload Placement Overview

Abstract Machine Model

How to represent placements?

- Too many (e.g. trillions for 16 threads on 64 cores) for a naïve approach
- Need to exploit symmetry

Scheduling Concerns

Scheduling Concern Example – L3

Scheduling Concern Example – L2

Abstract Machine Model – Important Placements

- Scheduling concerns + Important placements:
- ~10¹⁴ Placements \rightarrow 12 Placements
 - 16 threads on 64 cores
- Can train on all important placements

Performance Prediction Model – Features/Inputs

- Hardware Performance Events (HPEs)
 - Standard in existing work
 - Surprisingly, poor predictive performance!
 - Excessive training time
- Performance Measurements

Performance Predictions, Online Inference

Performance Predictions – ua.B (scientific sim.)

Performance Predictions – Spark Pagerank

Performance Predictions – is.D (sort)

Machine Learning – Prediction Accuracy

Conclusion

- Data centers: 3% world's electricity (86% servers+cooling)
- Packing containers onto servers
 - Increase efficiency
 - Maintain performance goals
- **2-4**× better utilization in many cases!

- Abstract machine model
- Performance prediction model

Workload Placement – Related Work

	Predicts Performance	Multiple Hardware Resources	Easily Adapted	Deployable Online
Our Solution	\checkmark	\checkmark	\checkmark	\checkmark
Pandia (EuroSys '17)	\checkmark	\checkmark	×	×
SMiTe (Micro '14)	\checkmark	\checkmark	×	\checkmark
Bubble-Flux (ISCA '13)	\checkmark	\checkmark	×	\checkmark
Asymsched (ATC '15)	X	X	\checkmark	\checkmark
DINO (ASPLOS '10)	X	X	\checkmark	\checkmark
Thread Clustering (EuroSys '07)	X	X	\checkmark	\checkmark