Towards Better Understanding of Black-box Auto-Tuning: A Comparative Analysis for Storage Systems

2018 USENIX Annual Technical Conference

Zhen Cao1, Vasily Tarasov2, Sachin Tiwari1, and Erez Zadok1

1Stony Brook University; 2IBM Research – Almaden;
Motivation

● Why tuning storage systems?
 ◆ Slow storage impacts I/O bound workloads
 ◆ Default settings are sub-optimal
 ◆ Tuning can provide significant gains
 ▪ 9× [FAST’10]

● Manual tuning is intractable

● Auto-tuning storage systems
 ◆ Black-box optimization is promising
 ◆ Lack of comparison of techniques
 ◆ Lack of understanding
Contributions

- **First comparative study on auto-tuning storage systems**
 - 5 techniques

- **Various aspects**
 - Cumulative & instantaneous throughput
 - Impacts of hyper-parameters

- **Explanations on evaluation results**
 - From storage perspective

- **Future Goal**: complete solution to tune storage systems
Outline

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work
Concepts

- **Storage system**
 - File system, underlying storage hardware and any layers between them

- **Parameters**
 - Configurable options
 - E.g., file-system block size

- **Parameter values**
 - E.g., 1K, 2K, 4K (Ext4 block size)

- **Configuration**
 - Combination of parameter values
 - E.g., [Ext4, 4K, data=ordered]

- **Parameter space**
 - All possible configurations

- **Hyper-parameter**
Challenges

- Vast parameter space
 - Ext4: 59 parameters, 10^{37} configs
 - Devices, Layers
 - Distributed, large-scale

- Discrete and non-numeric
 - Linux I/O scheduler: noop, cfq, deadline

- Non-linearity

- Sensitivity to environment
 - Hardware & workloads
Inapplicable Methods

- **Control Theory** ✗
 - Unstable in controlling non-linear systems

- **Supervised Machine Learning** ✗
 - Long training phase
 - High-quality training data

- Inapplicable or inefficient to serve as the core auto-tuning algorithm
 - Could be helpful as a supplement
Black-box Optimization

- Successfully applied in auto-tuning system configurations

- Examples
 - Genetic Algorithms (GA)
 - Simulated Annealing (SA)
 - Bayesian Optimization (BO)

- Obliviousness to system’s internals

Configuration

- evaluate
- select

Evaluation Results
Key Factors

- **Fitness**: optimization objective(s)
 - Throughput, latency, energy, ...
 - Complex cost functions

- **Exploration**
 - Search the unvisited area (e.g., randomly)

- **Exploitation**
 - Utilize neighborhood or history

- **History**
 - How much past data is kept and used for exploration/exploitation
Applied Methods

- Simulated Annealing (SA)
- Genetic Algorithms (GA)
- Deep Q-Network (DQN)
- Bayesian Optimization (BO)
- Random Search (RS)
 - Random selection without replacement
Genetic Algorithms

- Inspired by natural evolution

- Concepts
 - Gene: file system, block size, …
 - Allele: Ext4, XFS, Btrfs, …
 - Chromosome: configuration
 - Population: set of configurations

- Selection

- Genetic operators
 - Crossover
 - Mutation

History

Exploitation vs. Exploration
Outline

- Introduction
- Background
- **Experiment Settings**
- Evaluations
- Related Work
- Conclusions & Future Work
Experimental Setup

● Hardware
 ◆ **M1**: 2 Intel Xeon single-core 2.8GHz CPU, 2G RAM, 73GB Seagate SCSI drive
 ◆ **M2**: 1 Intel Xeon quad-core 2.4GHz CPU, 24G RAM, 4 drives (SAS-HDD 500GB, SAS-HDD 146GB, 1 SATA-HDD, SSD)

● Filebench
 ◆ Macro-workloads: fileserver, mailserver, webserver, dbserver
 ◆ Default *working set size*
Experiment Setup (cont.)

- **Search spaces**
 - *Storage V1*
 - File system, inode size, block size, block group, journal options, mount options, special options
 - *Storage V2*
 - V1 + I/O scheduler
 - 6,222 configurations

- **Methodology**
 - Exhaustive Search
 - Storage V2: 4 workloads × 4 devices
 - 3+ runs for each configuration
 - Collected over 2+ years
 - Simulate auto-tuning algorithms
Outline

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work
Best Throughput

![Graph showing best throughput over time with different algorithms: GA, SA, BO, DQN, RS. The x-axis represents time in hours (0 to 5), and the y-axis represents throughput in kops/s (15.2 to 18.7). M2-Mailserver-HDD3 is plotted against the algorithms. The graph indicates that GA achieves the highest throughput.](image-url)
Success rate for finding near-optimal configurations

Near-optimal configuration: one with throughput higher than 99% of the global optimal value.
Instant Throughput

Throughput (kops/s) vs. Time (hrs)

- RS
- SA
- GA
- DQN
- BO

M2-Mailserver-HDD3
Genetic Algorithm (GA) Diversity

![Genetic Algorithm (GA) Diversity Diagram](image)

- **Generation**: 0 to 8
- **Allele Count**: 0 to 8
- **Attributes**:
 - Block Size
 - Inode Size
 - Block Group
 - Journal Option
 - I/O Sched.
Correlation Analysis

- Correlation analysis
 - Ordinary Least Squares (OLS)
 - Example: block size and journal option are the most correlated Ext4 parameter (Fileserver, SSD)

- Explanations on evaluation results
 - GA and BO can identify important parameters through “history”
 - SA keeps no “history”; thus performs poorly
 - DQN spends too much time on exploration
 - Random Search
 - Near-optimal configurations take up 4.5% of the whole search space (M2, Mailserver, HDD).
Outline

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work
Related Work

- **Auto-tuning storage**
 - Storage system design (bin-packing heuristics) [Alvarez et al.]
 - Data recovery scheduling (GA) [Keeton et al.]
 - HDF5 optimization (GA) [Behzad et al.]
 - Lustre optimization (DQN) [Li et al.]

- **Auto-tuning other systems**
 - Database [Alipourfard et al.]
 - Cloud VMs [Aken et al.]
Outline

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work
Conclusions & Contributions

- First comparative analysis on 5 techniques on auto-tuning storage systems
 - Efficiency on finding near-optimal configurations
 - Instant throughput

- Provide insights from storage perspective
 - Importance of parameters
 - E.g., impact of mutation rates on convergence

- Valuable datasets
 - Will release to public
Future Work

- More complex workloads and search spaces
- Hyper-parameter tuning
- More sophisticated auto-tuning
 - E.g., penalty functions to cope with costly parameter changes
Towards Better Understanding of Black-box Auto-Tuning: A Comparative Analysis for Storage Systems

Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok

Thank You

Q&A