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Non-‐Volatile Memory

• Emerging Non-Volatile Memories (NVMs)
– PCM, ReRAM, STT-MRAM

• Characteristics of memory technologies
[Xia+,JCST’2015, Yang+, FAST’2015,Chi+,ISCA’2016]
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Categories Volatility Density Read
Latency

Write
Latency

Write
Endurance

DRAM Yes Low 60ns 60ns 1016

PCM No High 50~70ns 150~1000ns 109

ReRAM No High 25ns 300ns 1012

NAND Flash No High 35us 350us 105



Hybrid Memory (DRAM+NVM)

• DRAM：volatile, low latency, low capacity
• NVM：non-volatile, high latency, high capacity
• Hybrid  DRAM and NVM memory is a promising solution.

– Example: The machine

3“The Machine” [Source: HP Discover 2015]



Key-‐Value Store

• Key-Value Store Systems (KV Store) have become an
storage infrastructure of datacenters
– Google LevelDB, Facebook RocksDB
– Facebook, Twitter, Amazon et al. Memcached cluster

• Local file system and distributed file system use KV store
to store metadata
– Local file system：TableFS[Ren+,ATC’2013], BetrFS[Jannen+,FAST’2015]

– Distributed file system：CephFS[Weil+,OSDI’2006]，HDFS[HDFS
summit, 2015]

• Relational databases use KV as the storage engine
– Facebook has replaced the InnoDB with MyRocks (KV store)
in MySQL
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Motivation
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• Rich KV operations：
– Put/Get/Delete/Update
– Range Scan/Query(Scan)

SCAN
PUT, GET, UPDATE

Distribution of file system operations[Xiao+, SoCC’2015]

Neither hash nor sorted
indexing can efficiently
support different KV
operations.



Related work

• Echo [Bailey+, INFLOW’2013]

– Hybrid memory, Hash index
• NVStore [Yang+, FAST’2015]

– NVM, Optimized B+-Tree index:
• unsorted leaf nodes

• FPTree [Oukid+, SIGMOD’2016]

– Hybrid memory, Optimized B+-Tree index:
• Unsorted leaf nodes
• Bitmap and fingerprints
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All these NVM-‐based systems use a single index.



Hybrid index Key-‐Value Store (HiKV)
• Key idea of HiKV:

– Hybrid index: Hash and B+-Tree

• Challenges of hybrid index:
– Latency：How to reduce the latency of Put/Update/Delete？
– Concurrency：How to control the concurrency of hybrid index？
– Consistency：How to guarantee crash consistency with low
performance overhead？
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HiKV overview
• Techniques：

• Asynchronous index updating
• Differential concurrency control
• Write-ordered consistency
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Asynchronous index updating
• Index Placement

– Placing hash in slow NVM and B+-Tree in fast DRAM
• Index Updating

– Updating kv_item and hash index synchronously
– Updating B+-Tree asynchronously in the backend
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Differential concurrency control
• Hash index and KV items

• Partitioning, fine-grained lock in partition
• Global B+-Tree index

• Hardware Transactional Memory (HTM)
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Dynamic threads adaption

• Challenge
– Performance degradation in
multithreaded execution

• Solution
– Sample # of KV ops and their latencies
– Dynamically adjust # of serving threads (Nsthd)
and backend threads (Nbthd)
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Write-‐ordered consistency

• Does not guarantee consistency of B+-Tree
index to reduce NVM write.

• Write-ordered consistency
• First, update a kv item out-of-place
• Then, update the index entry atomically
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Evaluation methodology
• Platform：

– Server：Intel Xeon E5-2620 v4
– Emulating NVM using DRAM by adding write latency in
software (600ns)

• Workloads：
– Micro-benchmarks: Put/Get/Update/Delete/Scan
– YCSB[Cooper+,SOCC’10]
– 16B key, 256B value, 50M key-value items

• Compared systems：
– NVStore[Yang+,FAST’15]
– FPTree[Oukid+,SIGMOD’16]
– FPTree-C: using DRAM as Cache
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Single-‐threaded performance

• Latency reduction
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83.2%
86.6%

77.7%



Single-‐threaded performance

• Throughput improvement
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• For Get, HiKV can improve throughput by 5.0x and 6.4x than NVStore
and FPTree.

• For Delete, HiKV is 10.0% lower than FPTree due to one serving thread.
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Scalability

• Throughput of YCSB-A/B
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YCSB-A: 50%Get-50%Update YCSB-B: 95%Get-5%Update

1.7x 2.3x



DRAM Consumption
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• For 256B value, HiKV-ratio is 15.8%, while FPTree-ratio is 0.4%.
• Reducing the DRAMconsumption is our future work.
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Recovery time

• Recovering 50M key-values
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system Time (s)

NVStore 11.0s

FPTree 1.7s

HiKV-‐1thread 88.2s

HiKV-‐4thread 23.1s

HiKV-‐16thread 6.3s

• HiKV takes longer recovery time than NVStore and FPTree
due to unsorted hash index.



Summary

• Hybrid  DRAM and NVM memory is a promising solution
for future storage system.

• A single index employed in existing NVM-based KV
stores can not efficiently support all KV operations.

• This work proposes a hybrid index for hybrid memory
systems to serve different KV operations.

• HiKV based on hybrid index outperforms the start-of-art
NVM-based KV stores.
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Thanks  for  your  listening!
Q  &  A
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