
HiKV: A	  Hybrid	  Index	  Key-‐Value	  Store
for	  DRAM-‐NVM	  Memory	  Systems

Fei Xia1,2, Dejun Jiang1,  Jin Xiong1,  Ninghui Sun1
1. Institute of Computing Technology,  CAS
2. University  of  Chinese  Academy  of  Sciences

1

USENIX ATC’17, Jul. 12-‐14



Non-‐Volatile Memory

• Emerging Non-Volatile Memories (NVMs)
– PCM, ReRAM, STT-MRAM

• Characteristics of memory technologies
[Xia+,JCST’2015, Yang+, FAST’2015,Chi+,ISCA’2016]

2

Categories Volatility Density Read
Latency

Write
Latency

Write
Endurance

DRAM Yes Low 60ns 60ns 1016

PCM No High 50~70ns 150~1000ns 109

ReRAM No High 25ns 300ns 1012

NAND Flash No High 35us 350us 105



Hybrid Memory (DRAM+NVM)

• DRAM：volatile, low latency, low capacity
• NVM：non-volatile, high latency, high capacity
• Hybrid  DRAM and NVM memory is a promising solution.

– Example: The machine

3“The Machine” [Source: HP Discover 2015]



Key-‐Value Store

• Key-Value Store Systems (KV Store) have become an
storage infrastructure of datacenters
– Google LevelDB, Facebook RocksDB
– Facebook, Twitter, Amazon et al. Memcached cluster

• Local file system and distributed file system use KV store
to store metadata
– Local file system：TableFS[Ren+,ATC’2013], BetrFS[Jannen+,FAST’2015]

– Distributed file system：CephFS[Weil+,OSDI’2006]，HDFS[HDFS
summit, 2015]

• Relational databases use KV as the storage engine
– Facebook has replaced the InnoDB with MyRocks (KV store)
in MySQL

4



Motivation

5

• Rich KV operations：
– Put/Get/Delete/Update
– Range Scan/Query(Scan)

SCAN
PUT, GET, UPDATE

Distribution of file system operations[Xiao+, SoCC’2015]

Neither hash nor sorted
indexing can efficiently
support different KV
operations.



Related work

• Echo [Bailey+, INFLOW’2013]

– Hybrid memory, Hash index
• NVStore [Yang+, FAST’2015]

– NVM, Optimized B+-Tree index:
• unsorted leaf nodes

• FPTree [Oukid+, SIGMOD’2016]

– Hybrid memory, Optimized B+-Tree index:
• Unsorted leaf nodes
• Bitmap and fingerprints

6

All these NVM-‐based systems use a single index.



Hybrid index Key-‐Value Store (HiKV)
• Key idea of HiKV:

– Hybrid index: Hash and B+-Tree

• Challenges of hybrid index:
– Latency：How to reduce the latency of Put/Update/Delete？
– Concurrency：How to control the concurrency of hybrid index？
– Consistency：How to guarantee crash consistency with low
performance overhead？

7

B+-‐TreeHash

KV Data

Get ScanPut/Update/
Delete

Put/Update/
Delete



HiKV overview
• Techniques：

• Asynchronous index updating
• Differential concurrency control
• Write-ordered consistency

8

Global
B+-Tree
(HTM)

… …
DRAM Hash index

Key-value items

Hash index

Key-value items

Hash index

Key-value items

NVM

Consistency
not guaranteed Write-ordered Consistency

Async



Asynchronous index updating
• Index Placement

– Placing hash in slow NVM and B+-Tree in fast DRAM
• Index Updating

– Updating kv_item and hash index synchronously
– Updating B+-Tree asynchronously in the backend

9

threadMthread 0 …
Backend threads

thread Nthread 0 …
Serving threads

Threadpool

Hash index

Key-value items

B+-Tree index

async

updating queue

step1

step2

Scan

DRAM NVM

step3

Put/Get/Update/Delete



Differential concurrency control
• Hash index and KV items

• Partitioning, fine-grained lock in partition
• Global B+-Tree index

• Hardware Transactional Memory (HTM)

10

Global
B+-Tree
(HTM)

… … …

DRAM Hash index

Key-value items
Partition 0
(lock)

Hash index

Key-value items
Partition 1
(lock)

Hash index

Key-value items
Partition N
(lock)

NVM



Dynamic threads adaption

• Challenge
– Performance degradation in
multithreaded execution

• Solution
– Sample # of KV ops and their latencies
– Dynamically adjust # of serving threads (Nsthd)
and backend threads (Nbthd)

11

Serving threads

Backend threads

queue
Put/Update/Delete

Filling rate Processing rate



Write-‐ordered consistency

• Does not guarantee consistency of B+-Tree
index to reduce NVM write.

• Write-ordered consistency
• First, update a kv item out-of-place
• Then, update the index entry atomically

12

kv_item

key_
signature kv_item_pos

16BHash Index

Key-Value
items

0 0 0



Evaluation methodology
• Platform：

– Server：Intel Xeon E5-2620 v4
– Emulating NVM using DRAM by adding write latency in
software (600ns)

• Workloads：
– Micro-benchmarks: Put/Get/Update/Delete/Scan
– YCSB[Cooper+,SOCC’10]
– 16B key, 256B value, 50M key-value items

• Compared systems：
– NVStore[Yang+,FAST’15]
– FPTree[Oukid+,SIGMOD’16]
– FPTree-C: using DRAM as Cache

13



0.0

0.5

1.0

1.5

2.0

Get Put Update Delete Scan

N
or

m
al

iz
ed

 la
te

nc
y

NVStore
FPTree
FPTree_C
HiKV

Single-‐threaded performance

• Latency reduction

14

83.2%
86.6%

77.7%



Single-‐threaded performance

• Throughput improvement

15

• For Get, HiKV can improve throughput by 5.0x and 6.4x than NVStore
and FPTree.

• For Delete, HiKV is 10.0% lower than FPTree due to one serving thread.

 0

 1

 2

 3

 4

 5

 6

Get Put Update Delete Scan

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

NVStore
FPTree
FPTree_C
HiKV



 0

 5

 10

 15

 20

 25

 30

 35

2 4 8 16 24 32
T

hr
ou

gh
pu

t (
M

 o
ps

/s
)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

 0

 2

 4

 6

 8

 10

 12

 14

2 4 8 16 24 32

T
hr

ou
gh

pu
t (

M
 o

ps
/s

)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

Scalability

• Throughput of YCSB-A/B

16

YCSB-A: 50%Get-50%Update YCSB-B: 95%Get-5%Update

1.7x 2.3x



DRAM Consumption

17

• For 256B value, HiKV-ratio is 15.8%, while FPTree-ratio is 0.4%.
• Reducing the DRAMconsumption is our future work.

 0
 10
 20
 30
 40
 50
 60
 70
 80

64 128 256 512 1024
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

D
R

A
M

 a
nd

 N
V

M
 c

on
su

m
pt

io
n 

(G
B

)

R
at

io
 o

f D
R

A
M

 to
 N

V
M

Value size (B)

NVStore-DRAM
NVStore-NVM
FPTree-DRAM

FPTree-NVM
HiKV-DRAM
HiKV-NVM

NVStore-ratio
FPTree-ratio
HiKV-ratio



Recovery time

• Recovering 50M key-values

18

system Time (s)

NVStore 11.0s

FPTree 1.7s

HiKV-‐1thread 88.2s

HiKV-‐4thread 23.1s

HiKV-‐16thread 6.3s

• HiKV takes longer recovery time than NVStore and FPTree
due to unsorted hash index.



Summary

• Hybrid  DRAM and NVM memory is a promising solution
for future storage system.

• A single index employed in existing NVM-based KV
stores can not efficiently support all KV operations.

• This work proposes a hybrid index for hybrid memory
systems to serve different KV operations.

• HiKV based on hybrid index outperforms the start-of-art
NVM-based KV stores.

19



Thanks  for  your  listening!
Q  &  A

19


