Protego: Cloud-Scale Multitenant IPsec Gateway

Jeongseok Son, Yongqiang Xiong, Kun Tan, Paul Wang, Ze Gan, Sue Moon
Enterprises are Moving to the Cloud

$58B → $202B
Public cloud services revenue from 2009 to 2016

48 out of 50
Fortune Global 50 companies have announced cloud adoption

2. Global Cloud Spending Predicted To Reach $390B By 2020, Forbes
Cloud Services Provide Virtual Networks for Enterprises

Public Cloud

Virtual Network

VM

10.1.0.0/16

Connect ?

On-premises Network

10.0.0.0/16
VPN Tunnels Connect Cloud and On-premises Data Center

Public Cloud

Virtual Network

VPN tunnel

IPsec GW

10.1.0.0/16

VM

10.0.0.0/16
Current IPsec GW Deployment: Assign VM to Each Virtual Network

Advantages:
• No additional HW installation
• Performance isolation
• Dynamic scaling
Problem: IPsec GW VMs Are Under-utilized

In 90% of DCs, Daily peak IPsec traffic < One GW capacity

If GW is shared, 99+% of VMs can be saved.

Figure: CDF of the peak IPsec traffic of data centers
How to serve multiple tunnels with shared resources for elasticity?
Current IPsec GW Deployment

Public Cloud

Virtual Network

IPsec VM

IPsec Tunnel

Virtual Network

IPsec VM

IPsec Tunnel

Virtual Network

IPsec VM

IPsec Tunnel

Internet
Cloud-Scale Multitenant IPsec Gateway

Public Cloud

VM

VM

VM

VM

Virtual Network

Virtual Network

Virtual Network

IPsec GW

IPsec Tunnel

IPsec Tunnel

IPsec Tunnel

Internet
Seamless Migration of IPsec Tunnel is the Key to Elasticity

To achieve elasticity

- When GWs are overloaded as the IPsec traffic increases
 → Add more VMs and migrate some tunnels to new VMs
- When GWs are under-utilized as the IPsec traffic decreases
 → Migrate tunnels from some VMs and return the idle VMs

Quick migration scheme with minimal overhead is a key enabler of elasticity
Statefulness of IPsec Hinders Seamless Migration

- Strawman approach: Redirect IPsec packets to a different GW

Leads to tunnel destruction

How to move or share state between gateways?
Core Ideas of Protego

Separation of control and data planes
• Control Plane: Single control node
• Data Plane: Set of data nodes
 → Make IPsec (nearly) stateless in the data plane

Tunnel migration by IPsec rekeying
 → Migrate tunnels without packet loss and buffering

Elastic provisioning algorithm
Breakdown of IPsec Protocol

Internet Key Exchange
- Setup Shared Attributes (Security Association)
 → Carries **control** traffic

Encapsulating Security Payload
- Encryption/Decryption
 → Carries **data** traffic
Separation of Control and Data Plane
Rationale Behind the Separation

Infrequent IKE state update and tiny IKE traffic compared to ESP traffic

- Stored in a central control node
 → *Data nodes do not maintain IKE state*

Frequent ESP state changes (every packet sent/received) but quick re-initialization

- Reconstructed whenever necessary by rekeying
 → *Data nodes do not have to preserve ESP state*

Any data node can process any IPsec tunnel traffic
Protego Architecture Overview
Gateway Management Node

Gateway Ingress Node

IKE traffic

ESP traffic

Gateway Processing Node

Inbound IP traffic

Gateway Egress Node

Outbound IP traffic
Gateway Management Node

IKE packet processing
- Negotiate a shared symmetric key for ESP
- Distribute the key to one of GPNs
- Save updated state to the standby GMN (High availability)

Resource management
- Adjust the number of GPNs by migrating tunnels

Traffic steering
- Insert forwarding rules to load balancers (GIN and GEN)
Gateway Ingress and Egress Node

Gateway Ingress Node

Gateway Management Node

GMN (Standby)

Gateway Processing Node

Gateway Egress Node

IKE traffic

ESP traffic

Inbound IP traffic

Outbound IP traffic

Inbound IPsec traffic

Outbound ESP traffic
Gateway Ingress and Egress Node

Traffic forwarding
 • Rewrite the destination address to the address of a GPN

Rate limiting
 • Enforce per-tunnel performance isolation

GPN failure detection
 • Adaptive heartbeat by sampling and tagging
Gateway Processing Node
Gateway Processing Node

ESP packet processing

• Encryption and decryption of ESP packets

ESP processing is tricky to parallelize due to sequence number
→ Designed lock-free ESP processor (Check out the paper)
Leverage Rekeying Process to Migrate IPsec Tunnels Seamlessly

Original purpose of rekeying
• IPsec gateways use keys for a limited amount of time/data
• Quickly re-negotiates ESP SA in single RTT

Leverage rekeying to quickly construct ESP state
• Create new ESP SA in the destination node
• Old ESP SA is alive until new ESP SA is used
 → *No packet loss and buffering during migration process*
IPsec Tunnel Migration Process

IKE: CREATE_CHILD_SA

GIN

1. GMN sends the CREATE_CHILD_SA request

GMN

ESP

GPN

GPN
IPsec Tunnel Migration Process

1. GMN sends the CREATE_CHILD_SA request
2. GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)
IPsec Tunnel Migration Process

1. GMN sends the CREATE_CHILD_SA request
2. GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)
3. GMN hands the new SAs over to a GPN, and inserts forwarding rules
IPsec Tunnel Migration Process

1. GMN sends the CREATE_CHILD_SA request
2. GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)
3. GMN hands the new SAs over to a GPN, and inserts forwarding rules
4. GPN starts to use the new outbound SA
IPsec Tunnel Migration Process

1. GMN sends the CREATE_CHILD_SA request
2. GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)
3. GMN hands the new SAs over to a GPN, and inserts forwarding rules
4. GPN starts to use the new outbound SA
5. GIN forwards the new ESP packets to the new GPN
Elastic Resource Provisioning Algorithm

Objectives
- Minimize the resource usage
- Satisfying the throughput requirement of tenants

Model: 1-D bin packing (CPU usage)
- Item: IPsec tunnel
- Bin: GPN

Consolidation & Load Balancing
- Periodically consolidate GPNs (Consolidation interval)
- Instantly mitigate hotspots by migrating tunnels
Implementation

Gateway Ingress & Egress Node
- Extended Mux of Ananta load balancer (SIGCOMM ‘13)
- Packet filtering based on Windows NDIS Lightweight filter driver

Gateway Management Node

Gateway Processing Node
Refer to the paper for details
Evaluation

Server specification
• 16-core Intel Xeon E5-2650 v2 at 2.6Ghz
• Mellanox Connect-3 Pro 40Gbps
• Windows Server 2012 R2
• Hyper-V
Migration Does Not Degrade Throughput

![Graph showing bandwidth (Mbps) over time (s) with a dip at rekeying and key distribution times.]

- Rekeying: 192 ms
- Key Distribution: 56 ms
To achieve 10 Gbps,

AES256-CBC/SHA1: 8 cores
AES256-CBC/SHA2: 12 cores
Provisioning Simulation

• Measured the average throughput of IPsec gateways every minute in one data center for a day
• Collected the throughput trace of 170 tunnels and injected to our simulator, which replay the traffic trace
• Simulated our provisioning algorithm with different consolidation intervals
Protego Saves a Large Amount of Resources

Consolidation Interval: 3 min – 60 min

• Throughput Guarantee (99% of tunnels): 90.21 % – 98.63 %

• Resource Saving: 81.72 % – 88.00 %
Summary

• **IPsec gateway** is an essential and common component for cloud providers to offer **virtual network services**

• Protego is a **software IPsec Gateway** that serves multiple IPsec tunnels using **shared resources** for better resource utilization

• Protego saves a significant amount of resources with the separation of control and data plane and seamless tunnel migration by rekeying