Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks

William Melicher, Blase Ur, Sean Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor

First appeared at: USENIX Security 2016

Carnegie Mellon University
Guessing Methods
Guessing Methods

- John the Ripper + Hashcat
Guessing Methods

- John the Ripper + Hashcat
 - Dictionary word + Rules
Guessing Methods

- John the Ripper + Hashcat
 - Dictionary word + Rules
 - password + append 2 digits
Guessing Methods

- John the Ripper + Hashcat

 Dictionary word + Rules
 password + append 2 digits

 password11
 password12
 ...

Guessing Methods

- John the Ripper + Hashcat
- Markov Models
Guessing Methods

- John the Ripper + Hashcat
- Markov Models
Guessing Methods

- John the Ripper + Hashcat
- Markov Models
- PCFGs
Guessing Methods

- John the Ripper + Hashcat
- Markov Models
- PCFGs

password12 monkey!!
password11 qwerty..
... ...

L8D2 L6S2 ...
Guessing Methods

● John the Ripper + Hashcat
● Markov Models
● PCFGs
Why Model Guessing Attacks?
Can we guess more accurately?

Quicker?

With fewer resources?
Our Approach: Neural Networks

Hello = Здравствуйте

Handwriting Recognition → Handwriting recognition
Outline: Guessing with Neural Networks

● Password guesser design
● Comparison to other methods
● Real-time, in-browser feedback
Generating Passwords by Predicting
Generating Passwords by Predicting

passw → o or maybe 0 or 0 or ...
Generating Passwords by Predicting

Next char is:
A: 3%
B: 1%
C: 0.6%
...
O: 55%
...
Z: 0.01%
0: 20%
1: ...

passw
Generating Passwords by Predicting

""

P: 100%
Generating Passwords by Predicting

""
P: 100%

Next char is:
A: 3%
B: 2%
C: 5%
...
O: 2%
...
Z: 0.2%
0: 1%
1: ...
END: 2%
Generating Passwords by Predicting

Next char is:
A: 3%
B: 2%
C: 5%
...
O: 2%
...
Z: 0.2%
0: 1%
1: ...
END: 2%

“”

P: 100%
Generating Passwords by Predicting

Next char is:
A: 3%
B: 2%
C: 5%
...
O: 2%
...
Z: 0.2%
0: 1%
1: ...
END: 2%

P: 100%

“”
Generating Passwords by Predicting

“C”
P: 5%
Generating Passwords by Predicting

Next char is:
A: 10%
B: 1%
C: 4%
...
O: 8%
...
Z: 0.02%
0: 3%
1: ...
END: 6%

“C”
P: 5%
Generating Passwords by Predicting

Next char is:

A: 10%
B: 1%
C: 4%
...
O: 8%
...
Z: 0.02%
0: 3%
1: ...
END: 6%

“C”
P: 5%
Generating Passwords by Predicting

```
“CA”
P: 0.5%
```

Next char is:

- A: 3%
- B: 10%
- C: 7%
- ...
- O: 1%
- ...
- Z: 0.03%
- 0: 2%
- 1: ...
- END: 12%

Generating Passwords by Predicting

Next char is:

- A: 3%
- B: 10%
- C: 7%
- ...
- O: 1%
- ...
- Z: 0.03%
- 0: 2%
- 1: ...
- END: 3%

“CAB”
P: 0.05%
Generating Passwords by Predicting

Next char is:
A: 4%
B: 3%
C: 1%
...
O: 2%
...
Z: 0.01%
0: 4%
1: ...
END: 12%

“CAB”
P: 0.05%
Generating Passwords by Predicting

Next char is:
A: 4%
B: 3%
C: 1%
...
O: 2%
...
Z: 0.01%
0: 4%
1: ...
END: 12%

“CAB”
P: 0.05%
Generating Passwords by Predicting “CAB”
P: 0.006%
Generating Passwords

CAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
...

Generating Passwords

CAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
...

Must be longer than 3 characters
Password Policies: 1class8

1 character class and 8 characters minimum

password123

12345678

monkey99
Password Policies: 3class12

3 character class and 12 characters minimum

llamalove123
Mypassword#3
N@rut0_r0ck5
Outline: Guessing with Neural Networks

- Password guesser design
- Comparison to other methods
- Real-time, in-browser feedback
We Had to Try Many Parameters

- Model size: 60MB, 3MB
- Transference learning
- Training data
- Model architecture
- Alphabet size
- Password context
Testing Methodology

● Approach: measure # guessed passwords

● Training data: leaked password sets

● Testing data
 ○ MTurk study passwords: 1class8, 4class8, 1class16, 3class12
 ○ Real passwords: 000webhost password leak

● Estimate guess numbers with Monte-Carlo technique (Dell’Amico and Filippone, CCS ‘15)
Comparison to other approaches
More accurate guessing
More accurate guessing
1class8: Comparison
1class8: Neural Networks Guess Better
1class8: Neural Networks Guess Better

![Graph showing percent guessed vs. guesses for different methods: MinGuess, Neural, Markov, PCFG, Hashcat, JTR. The graph illustrates the performance of each method across a range of guesses, with percentages increasing as guesses increase.]
3class12: Neural Networks Guess Better
3class12: Neural Networks Guess Better

30% → 45%
Outline: Guessing with Neural Networks

- Password guesser design
- Comparison to other methods
- Real-time, in-browser feedback
Current password feedback:

Quick *or* accurate
Accurate Guessing Methods

100s MB to GBs!
Accurate Guessing Methods

100s MB to GBs!
Accurate Guessing Methods

100s MB to GBs!

Neural networks: 60MB, 3MB
Accurate Guessing Methods

Neural networks: 60MB, 3MB
Accurate Guessing Methods

Hours to days!
Can neural networks give real-time feedback?
Ideal Model Targets

- Small: < 1MB
- Fast: < 0.1 sec
- JavaScript
- Accurate
Making Model Small

- Small version of neural network
- Quantize parameters of model
- Lossless compression

850KB < 1MB
Making Model Fast

- Pre-compute inexact mapping from prob to guess number
- Cache intermediate results
- Run on separate thread

17 ms < 0.1 sec
How Accurate Is the Small, Fast Model?
How Accurate Is the Small, Fast Model?
How Accurate Is the Small, Fast Model?

![Graph showing percent guessed vs. guesses ranging from 10^1 to 10^25]
How Accurate Is the Small, Fast Model?
Does Measuring Password Strength Help?

[Design and Evaluation of a Data-Driven Password Meter
B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. Cranor, H. Dixon,
P. Emami Naeini, H. Habib, N. Johnson, and W. Melicher. CHI’17]
We Developed and Tested a Meter GUI
Provides Text Feedback

Create Your Password

Username
blase

Password

Show Password & Detailed Feedback

Confirm Password

Your password could be better.

- Don’t use dictionary words or words used on Wikipedia
- Consider inserting digits into the middle
- Consider making your password longer

See Your Password With Our Improvements

How to make strong passwords
Gives Detail (Password Shown)
Offers Explanations

Username:
blase

Password:
Cryptounicorn3|

Show Password & Detailed Feedback

Confirm Password

Your password could be better.

- Don’t use dictionary words (Unicorn) or words used on Wikipedia (Crypto)
- Consider inserting digits into the middle, not just at the end
- Consider making your password longer than 14 characters

A better choice: C3ryptoUnicorn@

How to make strong passwords
Does Measuring Strength Help? Yes!
Does Measuring Strength Help? Yes!

![Graph showing the effect of feedback on the percentage of correct guesses over guesses. The graph compares different types of feedback: no feedback, bar feedback, and bar and text feedback. The graph shows that providing feedback helps increase the percentage of correct guesses.]
Modeling Passwords Using Neural Networks

- Neural networks guess passwords accurately
- Can be made small and fast for client-side feedback

`github.com/cupslab`

William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor

Carnegie Mellon University