
 Automatic Application Partitioning for Intel SGX
Joshua Lind, Christian Priebe, Divya Muthukumaran,

Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert
Imperial College London

Tobias Reiher
TU Dresden

 Rüdiger Kapitza
TU Braunschweig

David Goltzsche
TU Braunschweig

 David Eyers
University of Otago

Christof Fetzer
TU Dresden

Peter Pietzuch
Imperial College London

dmuthuku@imperial.ac.uk

USENIX Annual Technical Conference ’17

USENIX Annual Technical Conference ’17

Trust in Cloud Services

2

OS
VMM

Cloud
platform

Firmware

Application

USENIX Annual Technical Conference ’17

Trust in Cloud Services

3

Threats
• Insider Attacks
• Human error despite best practices
• Vulnerabilities in large code bases

OS
VMM

Cloud
platform

Firmware

Application

USENIX Annual Technical Conference ’17

Trust in Cloud Services

4

Traditional Security Models
• Protect privileged code from untrusted user-level code

OS
VMM

Cloud
platform

Firmware

Application

USENIX Annual Technical Conference ’17

Trusted Execution Environments

5

Flips Security Model
• Secure area of a processor
• Provides protection from higher privileged code
• Trusted environment on top of untrusted cloud

OS
VMM

Cloud
platform

Firmware

Application

USENIX Annual Technical Conference ’17

Intel Software Guard Extensions (SGX)

6

• On commodity processors starting with Skylake
• TEE’s are called enclaves
• 18 CPU instructions to manage enclave lifecycle
• Code & data reside in Enclave Page Cache (EPC)

• Cache lines encrypted when written to memory
• Restricted to 128MB

• Intel provides an SDK for Windows and Linux

USENIX Annual Technical Conference ’17

Enclave Application Lifecycle

7

 Trusted function

Ocall

 Return

Start Enclave

 Ecall

1

2

3

5

4

Higher Privileged Code (OS, VMM)

Untrusted Code Enclave

USENIX Annual Technical Conference ’17

Enclave Application Lifecycle

8

 Trusted function

 Return

Start Enclave

 Ecall

1

2

3

4 Ocall

5

Untrusted Code Enclave

Higher Privileged Code (OS, VMM)

USENIX Annual Technical Conference ’17

Enclave Application Lifecycle

9

 Trusted function

 Return

Start Enclave

 Ecall

1

2

3

4 Ocall

5

Untrusted Code Enclave

Higher Privileged Code (OS, VMM)

Enclave crossings through ecalls and ocalls
incur a performance penalty

USENIX Annual Technical Conference ’17

Porting applications to Enclaves

10

Client

How do you port a key-value store to run in an enclave?

Get/Update

Response

USENIX Annual Technical Conference ’17

Library OS Inside Enclaves

11

Standard
Libraries

Library OS

Host OS

Haven [OSDI’14]

Minimal system calls

Pros
• Run unmodified applications
• Fixed shielded interface

Cons
• TCB is millions LoC!
• Performance overhead

USENIX Annual Technical Conference ’17

Standard Library Inside Enclaves

12

Standard
Libraries

Library OS

Host OS

System calls

Enhanced C
Library

Host OS

Pros
• Smaller TCB than Haven
• Fixed shielded interface

Cons
• TCB = 0.6x–2x of

application size
• Recompilation needed

SCONE [OSDI’16]

USENIX Annual Technical Conference ’17

Minimum TCB Inside Enclaves

13

Principle of Least Privilege
Only move the code needed to enforce security policy

Application
(Sensitive)

Application
(Untrusted)

Enclave

Policy: Confidentiality and
Integrity of key-value pairs

USENIX Annual Technical Conference ’17

Minimum TCB Inside Enclaves

14

Application
(Sensitive)

Application
(Untrusted)

Interface

Standard Libraries

Host OS

Principle of Least Privilege
Only move the code needed to enforce security policy

Application
(Sensitive)

Application
(Untrusted)

Policy: Confidentiality and
Integrity of key-value pairs

USENIX Annual Technical Conference ’17

Application Partitioning to Minimise TCB

15

Prior work has manually partitioned applications

USENIX Annual Technical Conference ’17

Application Partitioning to Minimise TCB

Prior work has manually partitioned applications

“Automatically determine the minimum
functionality to be run inside an enclave
in order to enforce a security policy”

16

USENIX Annual Technical Conference ’17

Challenges in Automated Partitioning

17

Application
(Sensitive)

Application
(Untrusted)

Interface

Standard Libraries

Host OS

Application
(Sensitive)

Application
(Untrusted)

• Identifying security-sensitive code relevant to a security policy
• Preventing interfaces from violating security policy
• Avoiding performance degradation

Policy: Confidentiality and
Integrity of key-value pairs

USENIX Annual Technical Conference ’17

Challenges in Automated Partitioning

18

Application
(Sensitive)

Application
(Untrusted)

Interface

Standard Libraries

Host OS

• Identifying security-sensitive code relevant to a security policy
• Preventing interfaces from violating security policy
• Avoiding performance degradation

Application
(Sensitive)

Application
(Untrusted)

Policy: Confidentiality and
Integrity of key-value pairs

USENIX Annual Technical Conference ’17

Challenges in Automated Partitioning

19

Application
(Sensitive)

Application
(Untrusted)

Interface

Standard Libraries

Host OS

• Identifying security-sensitive code relevant to a security policy
• Preventing interfaces from violating security policy
• Avoiding performance degradation

Application
(Sensitive)

Application
(Untrusted)

Policy: Confidentiality and
Integrity of key-value pairs

USENIX Annual Technical Conference ’17

Challenges in Automated Partitioning

20

Application
(Sensitive)

Application
(Untrusted)

Interface

Standard Libraries

Host OS

• Identifying security-sensitive code relevant to a security policy
• Preventing interfaces from violating security policy
• Avoiding performance degradation

Application
(Sensitive)

Application
(Untrusted)

Policy: Confidentiality and
Integrity of key-value pairs

USENIX Annual Technical Conference ’17

Glamdring Partitioning Framework

21

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

1

2

3

4

USENIX Annual Technical Conference ’17

1. Identify Security-Sensitive Code

22

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

1

Static Analysis conservatively identifies subset of code
dependent on programmer annotated security-sensitive
data

USENIX Annual Technical Conference ’17 23

Client
Dispatch(cmd)

Get() Update()

read()

Annotation of Security-Sensitive Data

If (cmd
==“GET”)

What to Annotate
• Indicate where security-sensitive

data enters or leaves the program
• Security-sensitive data can be

encrypted and signed until first
use

USENIX Annual Technical Conference ’17 24

Client
Dispatch(cmd)

Get() Update()

read()
cmd

cmd

Annotation of Security-Sensitive Data

If (cmd
==“GET”)

What to Annotate
• Indicate where security-sensitive

data enters or leaves the program
• Sensitive data can be encrypted

and signed until first use

USENIX Annual Technical Conference ’17 25

Client

cmd

cmd

Annotation of Security-Sensitive Data

What to Annotate
• Indicate where security-sensitive

data enters or leaves the program
• Sensitive data can be encrypted

and signed until first use

Dispatch(cmd)

Get() Update()

read()

If (cmd
==“GET”)

USENIX Annual Technical Conference ’17 26

Client
Dispatch(cmd)

Get() Update()

read()
cmd

cmd

Annotation of Security-Sensitive Data

If (cmd
==“GET”)

#pragma glamdring sensitive source(cmd)  

void Dispatch(char *cmd) {
…  

 }

USENIX Annual Technical Conference ’17

Static Analysis Goals

• Enforcing Confidentiality: Identify all functions that
depend on sensitive data.

• Enforcing Integrity: Identify all functions on which
the value of sensitive data depends

• Why Static Analysis?

• Static Analysis is conservative, independent of
the input to the program

27

USENIX Annual Technical Conference ’17

Program Dependence Graph
Captures the control and data dependencies in the program

28

USENIX Annual Technical Conference ’17

Program Dependence Graph

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)

Nodes = Statements cmd = read(..)

Captures the control and data dependencies in the program

29

S1

S2

S3

S4S5

USENIX Annual Technical Conference ’17

Program Dependence Graph

Dispatch(cmd)

Get()

If (cmd
==“GET”)

Data Dependence Edge
Data defined in a statement is
used in the another statement

cmd = read(..)

Update()

Captures the control and data dependencies in the program

30

S1

S2

S3

S4S5

USENIX Annual Technical Conference ’17

Program Dependence Graph
Captures the control and data dependencies in the program

31

Dispatch(cmd)

Get()

If (cmd
==“GET”)

Control Dependence Edge
One Statement determines if

another gets executed

cmd = read(..)

Update()

S1

S2

S3

S4S5

USENIX Annual Technical Conference ’17

Program Dependence Graph

32

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

Format()

cmd = read(..)…

Format()

…

USENIX Annual Technical Conference ’17

Forwards Dataflow Analysis

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

#prama glamdring sensitive data(cmd)Format()

Confidentiality Using Graph Reachability identify all nodes
with transitive control/data dependency on annotated node

33

cmd = read(..)…

Format()

…

USENIX Annual Technical Conference ’17

Forwards Dataflow Analysis

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

#prama glamdring sensitive data(cmd)Format()

cmd = read(..)…

Format()

…

Confidentiality Using Graph Reachability identify all nodes
with transitive control/data dependency on annotated node

34

USENIX Annual Technical Conference ’17

Forwards Dataflow Analysis

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

#prama glamdring sensitive data(cmd)Format()

cmd = read(..)…

Format()

…

Integrity Using Graph Reachability identify all nodes that
are transitive control/data dependent on annotated node

35

USENIX Annual Technical Conference ’17

Forwards Dataflow Analysis

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

#prama glamdring sensitive data(cmd)Format()

cmd = read(..)…

Format()

…

Integrity Using Graph Reachability identify all nodes that
are transitive control/data dependent on annotated node

36

USENIX Annual Technical Conference ’17

Security Sensitive Code

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

Format()

cmd = read(..)…

Format()

…

Union of nodes found with forwards and backwards analyses

37

USENIX Annual Technical Conference ’17

Produce Partition Specification

ProcessCmd(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

Format()

cmd = read(..)…

Format()

…

38

Partition Specification

* Enclave Functions:
Dispatch
Get
Update

* Enclave Allocations:
 malloc@241
* Enclave Allocated Globals

 hash_items

USENIX Annual Technical Conference ’17

2. Producing a Partitioned Application

39

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

2

Automatically move code into enclave and outside
codebases; Generate interface specification for SDK

USENIX Annual Technical Conference ’17 40

void Read(…) {
Dispatch();

}

void Dispatch(…){
…
}

void Get(…) {
…
}

void Put(…) {
…
}

Partition Spec
* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
 malloc@241
* Enclave Allocated Globals

 hash_items

Source-Source Transformation

USENIX Annual Technical Conference ’17

Source-Source Transformation

41

void Read(…) {
Dispatch();

}

void Dispatch(…){
…
}

void Get(…) {
…
}

void Put(…) {
…
}

Partition Spec
* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
 malloc@241
* Enclave Allocated Globals

 hash_items

USENIX Annual Technical Conference ’17

Source-Source Transformation

42

void ecall__Dispatch(…){
…
}

void Get(…) {
…
}

void Put(…) {
…
}

Outside

Enclave

void Read(…) {
ecall__Dispatch();

}
Partition Spec
* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
 malloc@241
* Enclave Allocated Globals

 hash_items

USENIX Annual Technical Conference ’17

3. Upholding Static Analysis Invariants

43

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

3

Ensure that invariants on program state used by the
static analysis are enforced at runtime

USENIX Annual Technical Conference ’17

Infeasible Program Paths

44

int flag = 0;

int SomeFunc() {
 if(flag == 1)

 memcpy(data, sensitive_data);
 else

 memcpy(data, declassify(sensitive_data));
 Write(data);
}

Problem
Static Analysis prunes infeasible paths by inferring invariants on
program state

USENIX Annual Technical Conference ’17

Infeasible Program Paths

45

int flag = 0;

int SomeFunc() {
 if(flag == 1)

 memcpy(data, sensitive_data);
 else

 memcpy(data, declassify(sensitive_data));
 Write(data);
}

/* flag == 0 */

Problem
Static Analysis prunes infeasible paths by inferring invariants on
program state

USENIX Annual Technical Conference ’17

Violating Static Analysis Invariants

46

int flag = 0;

int SomeFunc() {

 if(flag == 1)

 memcpy(data, sensitive_data);
 else

 memcpy(data, declassify(sensitive_data));
 Write(data);
}

Enclave

Problem
Attacker controlling untrusted code can violate the assumptions
made by static analysis after partitioning

USENIX Annual Technical Conference ’17

Adding Runtime Invariant Checks

47

int flag = 0;

int SomeFunc() {
 + assert(flag == 0);

 if(flag == 1)
 memcpy(data, sensitive_data);

 else
 memcpy(data, declassify(sensitive_data));

 Write(data);
}

Enclave

Solution
Add assertions to enforce statically inferred invariants on
program state

USENIX Annual Technical Conference ’17

4. Improving Performance After Partitioning

48

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

4

Runtime Profiling

Use results of runtime profiling to remove expensive
functions from enclave interface

USENIX Annual Technical Conference ’17

Performance of Partitioned Applications

49

Expensive Interface Functions
Some of the interface functions may be ‘hotspots’ called too frequently

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)

SomeFunc()

USENIX Annual Technical Conference ’17

Performance of Partitioned Applications

50

Expensive Interface Functions
Some of the interface functions may be ‘hotspots’ called too frequently

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)

SomeFunc()
2000

50

1000

500500

Runtime profiling can
help identify hotspots

USENIX Annual Technical Conference ’17

Enclave Boundary Relocation

51

Adding Functions to Enclave
Move additional functions into enclave to create a new interface that
avoid ‘hotspots’

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)

SomeFunc()
2000

50

1000

500500

USENIX Annual Technical Conference ’17

Evaluation Goals

• How does Glamdring compare to other design
choices

• Security: Size of TCB

• Performance: Throughput

52

USENIX Annual Technical Conference ’17

Applications and Implementation

• Static Analysis:
• Existing tools

• Code Generation:
• LLVM/Clang 3.9 — around 5000 LoC

53

Application Data Confidentiality Integrity

Memcached Key-Value pairs Yes Yes

LibreSSL CA Root
certificate Yes Yes

Digital Bitbox Private Keys Yes Yes

Implementation

USENIX Annual Technical Conference ’17

Security Evaluation - TCB size

54

Applications Code Size
(kLoC) TCB size

Memcached 31 12 (40%)

DigitalBitbox 23 8 (38%)

LibreSSL 176 38 (22%)

TCB is less than 40% of the application size

How big is the TCB of applications?

USENIX Annual Technical Conference ’17

Security Evaluation - TCB size

55

Applications TCB size (kLoC) Binary Size

Memcached
(Glamdring) 42 770 kB

Memcached
(SCONE) 149 3.3 MB

Memcached
(Graphene) 746 4.1 MB

TCB size comparison with Graphene and SCONE

USENIX Annual Technical Conference ’17

Security Evaluation - TCB size

56

Applications TCB size (kLoC) Binary Size

Memcached
(Glamdring) 42 770 kB

Memcached
(SCONE) 149 3.3 MB

Memcached
(Graphene) 746 4.1 MB

1/3 size of TCB when using SCONE

TCB size comparison with Graphene and SCONE

USENIX Annual Technical Conference ’17

Security Evaluation - TCB size

57

Applications TCB size (kLoC) Binary Size

Memcached
(Glamdring) 42 770 kB

Memcached
(SCONE) 149 3.3 MB

Memcached
(Graphene) 746 4.1 MB

TCB size comparison with Graphene and SCONE

Order of magnitude less than with Graphene
1/3 size of TCB when using SCONE

USENIX Annual Technical Conference ’17

Comparing Performance of Design Approaches

58

Throughput of Memcached ported using Glamdring
with native, SCONE and Graphene

USENIX Annual Technical Conference ’17 59

La
te

nc
y

0

0.75

1.5

2.25

3

Throughput

0 150 300 450 600

Native

Comparing Performance of Design Approaches
Throughput of Memcached ported using Glamdring

with native, SCONE and Graphene

USENIX Annual Technical Conference ’17

Throughput vs Latency

60

La
te

nc
y

0

0.75

1.5

2.25

3

Throughput

0 150 300 450 600

Native SCONE

Avoids enclave transitions with user-level threading;
higher TCB than Glamdring

USENIX Annual Technical Conference ’17 61

La
te

nc
y

0

0.75

1.5

2.25

3

Throughput

0 150 300 450 600

Native SCONE Graphene

Throughput vs Latency
Entire Library OS inside enclave

USENIX Annual Technical Conference ’17 62

La
te

nc
y

0

0.75

1.5

2.25

3

Throughput

0 150 300 450 600

Native SCONE Graphene Glamdring

Throughput vs Latency

USENIX Annual Technical Conference ’17 63

La
te

nc
y

0

0.75

1.5

2.25

3

Throughput

0 150 300 450 600

Native SCONE Graphene Glamdring

Throughput vs Latency
Enclave transitions dominate the cost of request handling;

batching requests into multi-get gets 210k req/sec

USENIX Annual Technical Conference ’17

Conclusions

• Port applications into Intel SGX enclaves with minimal TCB

• Glamdring — Automated program partitioning using static
analysis

• Identifies minimum TCB, produces partitioned code,
enforces program state invariants, uses

• Evaluated three applications - smaller TCB than prior
approaches with acceptable performance

64

dmuthuku@imperial.ac.uk

Divya Muthukumaran

mailto:dmuthuku@imperial.ac.uk
mailto:dmuthuku@imperial.ac.uk

USENIX Annual Technical Conference ’17

Security Evaluation - Attacks and Defences

• Enclave Call Ordering Attacks: By construction.
EBR does not affect this.

• Iago Attacks: By enforcing invariants

• Replay Attacks: Freshness counter

• Enclave Code Vulnerabilities: TCB is reduced —
enables code analysis

65

USENIX Annual Technical Conference ’17

Evaluation - Impact of EBR

66

How many functions were moved into the enclave,
and what was the impact on enclave crossings

Application EBR Enclave
Functions

Enclave
Crossings
 (No EBR)

Enclave
Crossings
(With EBR)

Memcached 1 54 6

LibreSSL 2 24,780 6727

Digital Bitbox 4 10,943 38

USENIX Annual Technical Conference ’17

Evaluation - Impact of EBR

67

Application EBR Enclave
Functions

Enclave
Crossings
 (No EBR)

Enclave
Crossings
(With EBR)

Memcached 1 54 6

LibreSSL 2 24,780 6727

Digital Bitbox 4 10,943 38

Even few functions inside…. reduced enclave
crossings by orders
of magnitude

