Memshare: a Dynamic Multi-tenant Key-value Cache

ASAF CIDON*, DANIEL RUSHTON†, STEPHEN M. RUMBLE‡, RYAN STUTSMAN†

*STANFORD UNIVERSITY, †UNIVERSITY OF UTAH, ‡GOOGLE INC.
Cache is 100X Faster Than Database

Web Server

memCached

memCached

memCached

MySQL

10 ms

100 us
Cache Hit Rate Drives Cloud Performance

• Small improvements to cache hit rate make big difference:
 • At 98% cache hit rate:
 • +1% hit rate → 35% speedup
 • Facebook study [Atikoglu ’12]
Static Partitioning ➔ Low Hit Rates

• Cache providers statically partition their memory among applications

• Examples:
 • Facebook
 • Amazon Elasticache
 • Memcached
Partitioned Memory Over Time

Static Partition

No Partition

Time (Hours)

Cache Occupancy (MB)

App A

App B

App C
Partitioned vs No Partition Hit Rates

<table>
<thead>
<tr>
<th>Application</th>
<th>Hit Rate Partitioned</th>
<th>Hit Rate No Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>87.8%</td>
<td>88.8%</td>
</tr>
<tr>
<td>A</td>
<td>97.6%</td>
<td>96.6%</td>
</tr>
<tr>
<td>B</td>
<td>98.8%</td>
<td>99.1%</td>
</tr>
<tr>
<td>C</td>
<td>30.1%</td>
<td>39.2%</td>
</tr>
</tbody>
</table>
Partitioned Memory: Pros and Cons

- Disadvantages:
 - Lower hit rate due to low utilization
 - Higher TCO

- Advantages:
 - Isolated performance and predictable hit rate
 - “Fairness”: customers get what they pay for
Memshare: the Best of Both Worlds

- Optimize memory allocation to maximize overall hit rate
- While providing minimal guaranteed memory allocation and performance isolation
Multi-tenant Cache Design Challenges

1. Decide application memory allocation to optimize hit rate
2. Enforce memory allocation among applications
Estimate Hit Rate Curve Gradient to Optimize Hit Rate

Workload 1

Workload 2
Estimate Hit Rate Curve Gradient to Optimize Hit Rate

\[\nabla w_1 < \nabla w_2 \rightarrow \text{Keep items from } w_2 \]
Estimating Hit Rate Gradient

- Track access frequency to recently evicted objects to determine gradient at working point
- Can be further improved with full hit rate curve estimation
 - SHARDS [Waldspurger 2015, 2017]
 - AET [Hu 2016]
Multi-tenant Cache Design Challenges

1. Decide application memory allocation to optimize hit rate

2. Enforce memory allocation among applications
Multi-tenant Cache Design Challenges

1. Decide application memory allocation to optimize hit rate

2. Enforce memory allocation among applications

Not so simple
Slab Allocation Primer

Memcached Server

App 1 App 2
Slab Allocation Primer
Slab Allocation Primer

App 1 App 2
Goal: Move 4KB from App 2 to App 1
Goal: Move 4KB from App 2 to App 1

- Problems:
 - Need to evict 1MB
 - Contains many small objects, some are hot
 - App 1 can only use extra space for objects of certain size
Goal: Move 4KB from App 2 to App 1

Problems:
- Need to evict 1MB
- Contains many small objects, some are hot
- App 1 can only use extra space for objects of certain size

Problematic even for one application, see Cliffhanger [Cidon 2016]
Instead of Slabs: Log-structured Memory

Log segments

Log Head
Instead of Slabs: Log-structured Memory

Log segments

Log Head

Newly written object
Instead of Slabs: Log-structured Memory
Applications are Physically Intermixed

Log segments

Log Head

App 1 App 2
Memshare’s Sharing Model

- Reserved Memory: guaranteed static memory
- Pooled Memory: application’s share of pooled memory
- Target Memory = Reserved Memory + Pooled Memory
Cleaning Priority Determines Eviction Priority

• Q: When does Memshare evict?

• A: Newly written objects evict old objects, but not in critical path

 • Cleaner keeps 1% of cache empty
 • Cleaner tries to enforce actual memory allocation to be equal to Target Memory
Cleaner Pass

\[n \text{ candidate segments (} n = 2) \]

\[n - 1 \text{ survivor segments (} n = 2) \]
Cleaner Pass

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)
Cleaner Pass

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)
Cleaner Pass

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

App 1 App 2
Cleaner Pass

n candidate segments ($n = 2$)

$n - 1$ survivor segments ($n = 2$)

App 1 App 2
Cleaner Pass

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

1 free segment

App 1 App 2
Cleaner Pass (n = 4): Twice the Work

4 candidate segments (n = 4)

3 survivor segments (n = 4)

1 free segment
Application Need: How Far is Memory Allocation from Target Memory?

\[\text{need(app)} = \frac{\text{targetMemory(app)}}{\text{actualMemory(app)}} \]
Within Each Application, Evict by Rank

- To implement LRU: rank = last access time

Log Head

- App 1
- App 2
Cleaning: Max Need and then Max Rank

Max Need?
Max Rank?

<table>
<thead>
<tr>
<th>Need</th>
<th>App 1</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>App 2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>App 3</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Cleaning: Max Need and then Max Rank

Max Need? → App 2
Max Rank?

<table>
<thead>
<tr>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>App 1</td>
</tr>
<tr>
<td>App 2</td>
</tr>
<tr>
<td>App 3</td>
</tr>
</tbody>
</table>
Cleaning: Max Need and then Max Rank

<table>
<thead>
<tr>
<th>Need</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>App 1</td>
<td>0.8</td>
</tr>
<tr>
<td>App 2</td>
<td>1.4</td>
</tr>
<tr>
<td>App 3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Max Need? → App 2
Max Rank? → Rank 2
Cleaning: Max Need and then Max Rank

<table>
<thead>
<tr>
<th>Need</th>
<th>App 1</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>App 2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>App 3</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Cleaning: Max Need and then Max Rank

Max Need? → App 3
Max Rank?

<table>
<thead>
<tr>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>App 1</td>
</tr>
<tr>
<td>App 2</td>
</tr>
<tr>
<td>App 3</td>
</tr>
</tbody>
</table>
Cleaning: Max Need and then Max Rank

<table>
<thead>
<tr>
<th>Need</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>App 1</td>
<td>0.9</td>
</tr>
<tr>
<td>App 2</td>
<td>0.8</td>
</tr>
<tr>
<td>App 3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Max Need? → App 3
Max Rank? → Rank 1
Trading Off Eviction Accuracy and Cleaning Cost

- Eviction accuracy is determined by n
 - For example: rank = time of last access
 - When n → # segments: ideal LRU
 - Intuition: n is similar to cache associativity

- CPU consumption is determined by n
Trading Off Eviction Accuracy and Cleaning Cost

• Eviction accuracy is determined by n
 • For example: rank = time of last access
 • When $n \rightarrow \infty$: ideal LRU
 • Intuition: n is similar to cache associativity
 • CPU consumption is determined by n

“In practice Memcached is never CPU-bound in our data centers. Increasing CPU to improve the hit rate would be a good trade off.”

- Nathan Bronson, Facebook
Implementation

• Implemented in C++ on top of Memcached
• Reuse Memcached’s hash table, transport, request processing
• Implemented log-structured memory allocator
Partitioned vs. Memshare

<table>
<thead>
<tr>
<th>Application</th>
<th>Hit Rate Partitioned</th>
<th>Hit Rate Memshare (50% Reserved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>87.8%</td>
<td>89.2%</td>
</tr>
<tr>
<td>A</td>
<td>97.6%</td>
<td>99.4%</td>
</tr>
<tr>
<td>B</td>
<td>98.8%</td>
<td>98.8%</td>
</tr>
<tr>
<td>C</td>
<td>30.1%</td>
<td>34.5%</td>
</tr>
</tbody>
</table>
Reserved vs. Pooled Behavior

Combined Hit Rates

- App A: 90.2%
- App B: 89.2%
- App C: 88.8%
State-of-the-art Hit rate

- Misses reduced by 40%
- Combined hit rate increase: 6% (85% → 91%)
State-of-the-art Hit Rate Even for Single Tenant Applications

<table>
<thead>
<tr>
<th>Policy</th>
<th>Memcached</th>
<th>Memshare (100% Reserved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Single Tenant Hit Rate</td>
<td>88.3%</td>
<td>95.5%</td>
</tr>
</tbody>
</table>
Cleaning Overhead is Minimal

![Graph showing Hit rate and Memory Bandwidth as n (number of cleaning candidate segments) increases. The Hit rate starts at 88.00% and increases to 91.00% as n increases from 1 to 100. The Memory Bandwidth starts at 0 MB/s and increases to 10 MB/s as n increases from 1 to 100.](image-url)
Cleaning Overhead is Minimal

Modern servers have 10GB/s or more!
Related Work

• Optimizing memory allocation using shadow queues
 • Cliffhanger [Cidon 2016]

• Log-structured single-tenant key-value stores
 • RAMCloud [Rumble 2014] and MICA [Lim 2014]

• Taxing idle memory
 • ESX Server [Waldspurger 2002]
Summary

- First multi-tenant key-value cache that:
 - Optimizes share for highest hit rate
 - Provides minimal guarantees
- Novel log-structured design
 - Use cleaner as enforcer
Idle Tax for Selfish Applications

- Some sharing models do not support pooled memory, each application is selfish
 - For example: Memcached’s Cache-as-a-Service
- Idle tax: reserved memory can be reassigned if idle
- Tax rate: determines portion of idle memory that can be reassigned
- If all memory is active: target memory = reserved memory
Partitioned vs. Idle Tax

<table>
<thead>
<tr>
<th>Application</th>
<th>Hit Rate Partitioned</th>
<th>Hit Rate Memshare Idle Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>87.8%</td>
<td>88.8%</td>
</tr>
<tr>
<td>A</td>
<td>97.6%</td>
<td>99.4%</td>
</tr>
<tr>
<td>B</td>
<td>98.8%</td>
<td>98.6%</td>
</tr>
<tr>
<td>C</td>
<td>30.1%</td>
<td>31.3%</td>
</tr>
</tbody>
</table>
State-of-the-art Hit rate

- Memcached
- Cliffhanger
- Memshare (75% Reserved)

Combined Hit Rate
Miss Reduction vs. Memcached
Nearly Identical Latency