Persona: A High-Performance Bioinformatics Framework

Stuart Byma¹, Sam Whitlock¹, Laura Flueratoru²,
Ethan Tseng³, Christos Kozyrakis⁴, Edouard Bugnion¹, James Larus¹

EPFL¹, U. Polytehnica of Bucharest², CMU³, Stanford⁴

12/07/2017
Agenda

• **Motivation**

• Bioinformatics Data and Tools

• Persona
 • AGD
 • Dataflow Engine

• Performance Results
Sequencing cost

Not a wet lab problem anymore → IT / Systems problem
Implications

~300GB

~hours

Need efficient systems that scale well
Agenda

• Motivation
• **Bioinformatics Data and Tools**
 • Persona
 • AGD
 • Dataflow Engine
• Performance Results

Image of a machine with a DNA strand and a chip icon.

- ~300GB
- ~hours
What kind of data?

• Common sequencers produce *Reads*
 • Snippets of DNA → AACCGCTAGCGCGCTAGCTCGAGCTAGAA
 • 100-200 bases

@sequence name, metadata
ACGTTTTCGATCGCGCCAGGAGGCTAG +
-++* ' ') **55CCF@>>>>>>CCCCCCC

times a few hundred million ...
Alignment

Reference Genome

\[\text{...TGACCTATAGCGATATAGCTTATTATTGGG}-\text{AAAAATGGAATCGATGGATCG...} \]

Read: \[\text{TATTATTGGG}\text{ATAAAA}-\text{TGG} \]

Mismatch

Insertion

Deletion

\text{times a few hundred million ...}

\sim\text{hours}
Aligned Reads

• Stored in SAM/BAM

```
read_name 16  chr12  85500011  70
18M  *  0  0
TTTTACACACATTATCTC  CDDFAEEC>EDDFFBCDEED?FCC@
```

• Followed by
 • Duplicate marking
 • Sorting
 • Recalibrations, analysis (variant calling)

~8 hours
Data and Tool Issues

FASTQ SAM/BAM BED VCF

...
Persona – Bioinformatics, Unified
Agenda

• Motivation
• Bioinformatics Data and Tools
• Persona
 • AGD
 • Dataflow Engine
• Performance Results
Aggregate Genomic Data

- Bases
- Q-Scores
- Metadata

Storage Subsystem

Manifest

Header
Index
Data
compressed
Agenda

• Motivation
• Bioinformatics Data and Tools
• Persona
 • AGD
 • Dataflow Engine
• Performance Results
Dataflow

• Dataflow execution framework
 • Base on TensorFlow engine
 • But no machine learning

• Operators perform computation on AGD chunks
Dataflow

• Modularity
• Balance/tuning
• (bounded) Queueing
Fine-grained Threading

• AGD chunks optimized for storage
 • Too coarse for some tasks
• Split into subchunks
• Delegate to *executor* shared resource
 • Task queue + thread pool
Graph Construction

c = \texttt{persona.read_chunk(path)}

d = \texttt{persona.decompress(c)}

o = \texttt{persona.align(d)}

\texttt{sess} = \texttt{tf.Session()}

\texttt{result} = \texttt{sess.run([o])}
Persona Shell

$ persona align local -i hg19 data/my_agd.json
$ persona sort local data/my_agd.json
Distributed Computation

Client
$ persona client bwa-align

Queue Service

Server 0

Server 1

Server 1

Server N

Storage Subsystem
Current Features

• Import data from FASTQ/BAM/SRA, export to BAM
• Sequence alignment with BWA-MEM, SNAP
• Dataset sorting
• Duplicate marking
• Dataset statistics (samtools flagstat)
• Read coverage (depth)
Agenda

• Motivation
• Bioinformatics Data and Tools
• Persona
 • AGD
 • Dataflow Engine
• Performance Results
Evaluation -- Setup

• Focused on sequence alignment using SNAP
• Throughput in bases aligned per second
• Data
 • 223 million 101 base reads (~16GB)
 • AGD chunks of 100K records
• Hardware
 • 32X Ubuntu 16.04, 2x12 Xeon E5-2680v3 @ 2.5GHz
 • Data on 6-disk RAID0 and single spindle drive
 • 7 server Ceph object store for distributed execution
Evaluation -- Questions

• What are the bandwidth-saving effects of AGD?

• What is the overhead of the Persona framework?

• How well do Persona and AGD scale?
Performance – AGD

Significantly less I/O → more efficient use of HW, BW

* single disk
Persona Overhead

Negligible overhead!

* RAID-0
Scaling

Full dataset aligned in ~17 seconds
Scaling Limits

![Graph showing the scaling limits for Persona SNAP and Simulation with Gigabases Aligned per Second on the y-axis and Number of Nodes on the x-axis. The graph includes a line for Persona SNAP and a line for Simulation. The y-axis ranges from 0 to 1e9, and the x-axis ranges from 0 to 100 nodes.]
Persona – Scalable Bioinformatics

https://github.com/epfl-vlsc/persona
backup
Performance – Sort and Dup. Mark

• Sort
 • By metadata or aligned location
 • 1.54x speedup over samtools
 • 5.15x speedup over Picard

• Dataset stats
 • 2x speedup

• Duplicate marking
 • Same algorithm as samblaster
 • 3.73x faster than samblaster

• Coverage (depth)
 • 2x speedup
Profiling
Read/Write Single Disk

![Graph showing disk read and write throughput over time.](image-url)
Alignment

• Example: SNAP
• Build hash index of reference
• To align a read:
 • Hash a portion (seed)
 • Lookup
 • Evaluate each hit
 • Edit distance computation
• Cores align reads in parallel
Shared Data

- Sometimes need to share data between ops
 - E.g. multi-GB index of reference genome
- Use TF session resource manager
 - [string, string] → refcount object
- Op can create objects, provide handle to other ops
Data Movement

- Tensors not amenable to bioinfo data
- Leverage TF shared resources
- Implement reusable buffers
 - Stable memory use
 - Avoid syscalls

BufferPoolOp

[container, name]
Bioinformatics?

• Biology, computer science, math, statistics
• Started mid 90’s with Human Genome Project
• Broad field
 • Genomics, proteomics, systems biology

• This talk: Whole Genome Sequence (WGS) analysis
 • Reading the letters of your DNA (ATCG ...)

37