
Seamless Operating System Integration of
Peer-to-Peer DMA Between SSDs and GPUs
Shai Bergman | Tanya Brokhman | Tzachi Cohen | Mark Silberstein

ACSL - Technion

SPIN:

2ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Summary What do we do?

Enable efficient file I/O for GPUs

Why?

Support diverse I/O workloads involving GPUs

How?

Make P2P a first class citizen within the file I/O stack

Results

Better throughput
Standard file API

cross-GPU portability

3ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Fast data transfers

Bounded by extra copy

Data resides in SSD

Background
CPU mediated data

transfers introduce extra
latency with lower

throughput

CPUIO - CPU mediated transfer

PCIe

4ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Eliminates
redundant copies

Not involved in data
path

Better power
efficiency

Higher throughput
& lower latency

Background

[1] J. Zhang, D. Donofrio, J. Shalf, M. T. Kandemir, and M. Jung, “NVMMU: A Non-volatile Memory Management Unit for Heterogeneous
GPU-SSD Architectures,”

[2] H.-W. Tseng, Y. Liu, M. Gahagan, J. Li, Y. Jin, and S. Swanson, “Gullfoss: Accelerating and Simplifying Data Movement Among
Heterogeneous Computing and Storage Resources,”

[3] M. Shihab, K. Taht, and M. Jung, “GPUDrive: Reconsidering Storage Accesses for GPU Acceleration,”
[4] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swanson, “Morpheus: creating application objects efficiently for heterogeneous

computing,”
[5]“Project Donard.” https://github.com/sbates130272/donard, 2015.

GPU vendors support P2P

&

PCIe

5ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

0.00

0.50

1.00

1.50

2.00

2.50

3.00

512B
53

4K
262

16k
472

32k
675

64K
846

512K
2570

1M
2692

Sp
ee

d
u

p

Block size

CPUIO P2P

Observations

P2P is not a silver bullet…

P2P is great!*

* But wait – only for certain data access patterns

33x 7.6x

Sequential reads (e.g. grep)

P2P is not a silver bullet!

**data is not preloaded to the page cache

4.2x

CPUIO - CPU mediated transfer

Large sequential reads: P2P ~1.4x SpeedupShort sequential reads: P2P ~33x Slower than CPUIO?

6ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Hard to utilize

Non-standard API | No misaligned accesses | LVM/MDADM incompatible

No Page Cache Integration

No read ahead | Cannot utilize P$ for data reuse

Observations
What went wrong?

P2P bypasses the kernel!

No file consistency

Can read stale data | Requires explicit flushes to SSD

7ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Objective
What do we want?

Regular file I/O to GPU memory

int fd;

...

//open file

...

pread64(fd,gpu_buffer,20*1024,0);

...

8ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Contributions

Combine Page Cache and P2P
Interleave system memory and SSD when possible

GPU Read Ahead
Activate read ahead mechanism when determined
beneficial. Nested page cache within CPU memory for GPU
Use

Standard File API
• Underlying block device

support (RAID, LVM)

Data Consistency + POSIX file semantics
Keep POSIX file semantics + data consistency, even when
CPU + GPU work on the same file

• Activate P2P when
beneficial

9ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

SPIN:
High level
overview

RQ

From Compatible SSD?
Destined to GPU?
Part of a sequential read?
Data resides in page cache?

10ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

SPIN:
High level
overview RQ

11ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

SPIN:
High level
overview

RQ

12ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

SPIN:
High level
overview RQ

13ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

SPIN:
High level
overview

RQ

14ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

SPIN:
High level
overview RQRQ

15ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

SPIN:
High level
overview

P-cache
checker
P-cache
checker

16ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Combine page
cache and P2P

Sometimes the requested data resides in the P$

e.g due to previous usage of the data by CPU

0

500

1000

1500

2000

2500

0 500 1000 1500 2000
Tr

an
sf

er
 T

im
e

[u
se

c]

Request Size [KiB]

P2P

P$

Transferring data from P$ is faster!

Transfer time from P$ and SSD P2P vs request size

Lower is better

17ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Combine page
cache and P2P

pread64(fd,gpu_dest,5*4096,0); //5 pages of 4KiB

Page cache is empty:

PCIe

Memory
Bus

Transfer
P2P!

P-cache
checker

Page Cache

EMPTY

Page #0 Page #1 Page #2 Page #3 Page #4

18ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Page #0 Page #1 Page #2 Page #3 Page #4

SPIN:
Combine page
cache and P2P

pread64(fd,gpu_destk,5*4096,0); //5 pages of 4KiB

All pread64 contents in P$:

PCIe

Memory
Bus

Transfer
from memory (CPUIO)

P-cache
checker

Page #0 Page #1 Page #2 Page #3 Page #4

Page Cache

EMPTY

Page Cache

19ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Page #0 Page #1 Page #2 Page #3 Page #4

SPIN:
Combine page
cache and P2P

pread64(fd,gpu_dest,5*4096,0); //5 pages of 4KiB

Some of the data is in P$?

PCIe

Memory
Bus

Page #0 Page #1 Page #2 Page #3 Page #4

Page Cache

EMPTY

Page Cache

?

?#p1
#p3

#p0
#p2
#p4

Fine grained interleaving is a bad idea!

Page resides in SSD only

Page resides in SSD and P$

20ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

Page #0 Page #1 Page #2 Page #3 Page #4

SPIN:
Combine page
cache and P2P

pread64(fd,gpu_dest,5*4096,0); //5 pages of 4KiB

Page #0 Page #1 Page #2 Page #3 Page #4

Page resides in SSD only

Page resides in SSD and P$

3 transfers of 4KiB via P2P: 120.3us

Single transfer of 20KiB via P2P: 74.3us

40.1us 40.1us 40.1us

21ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Combine page
cache and P2P SSDs:

- Short IO requests are less efficient (low parallelism)
- Invocation overhead per request

Fine grained interleaving = poor performance!

Optimization Problem:
Find the transfer schedule to minimize transfer time

22ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

0

500

1000

1500

2000

2500

32 512 992 1472 1952

Tr
an

sf
er

 T
im

e
[s

ec
]

Request Size [KiB]

P2P

P$

15361024 204851232

SPIN:
Combine page
cache and P2P

We model the SSD and RAM performance characteristics:
- Assume P2P transfer time as piece-wise linear
- Assume RAM transfer time as linear

To solve the problem & get an optimal schedule we need:

𝑇𝑝2𝑝 𝑠 - P2P transfer time for a given request size

𝑇𝑃$ 𝑠 - P$ transfer time for a given request size

23ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Combine page
cache and P2P

Solution is polynomial in number of blocks

We apply a greedy heuristic:
- Examine every 3 consecutive data chunks

Costly to calculate for every transfer

Chunk #n Chunk #n+1 Chunk #n+2

Page resides in SSD only

Page resides in SSD and P$

𝑇𝑝2𝑝 𝑛 + 𝑛 + 1 + |𝑛 + 2|

𝑣𝑠.
𝑇𝑝2𝑝 |𝑛| + 𝑇𝑃$ |𝑛 + 1| + 𝑇𝑝2𝑝 |𝑛 + 2|

Calculate:

24ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Combine page
cache and P2P

Solution is polynomial in number of blocks

We apply a greedy heuristic:
- Examine every 3 consecutive data chunks

Costly to calculate for every transfer

Chunk #n Chunk #n+1 Chunk #n+2

Page resides in SSD only

Page resides in SSD and P$

𝑇𝑝2𝑝 𝑛 + 𝑛 + 1 + |𝑛 + 2|

𝑣𝑠.
𝑇𝑝2𝑝 |𝑛| + 𝑇𝑃$ |𝑛 + 1| + 𝑇𝑝2𝑝 |𝑛 + 2|

Calculate:

Greedy Heuristic is only
1.6% slower than optimal

scheduling

25ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Implementation:
P2P & P$
Transfers

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
P

D
M

A
 t

ra
n

sf
e

r

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

P2P: Address tunneling
mechanism

P$: Memcpy from P$ to
GPU mapped memory

26ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Implementation
& Evaluation

SPIN is implemented as a kernel module, patched

NVME module & an LD_PRELOAD library

No kernel modifications are required

System Specs:

- Intel P3700 NVME SSD

- AMD Radeon R9 Fury & NVIDIA Tesla K40c

- Ubuntu + Linux kernel 3.19

- Intel Core i7-5930K (6 Phys Cores) & X99 Chipset

- 24GB DDR4 RAM

27ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Implementation
& Evaluation

We have evaluated the following:

Threaded IO (TIOtest) Benchmark (1-4 threads):

- Sequential reads (including software RAID)

- Random reads/writes

- Effects of P$ residency on read throughput

- Effects CPU & I/O stress on read throughput

Application Benchmarks

- Aerial imagery rendering

- GPU accelerated log server

- Image collage utilizing GPUFS

28ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Implementation
& Evaluation

Effect of P$ on Read Throughput

Potential performance gains for producer-consumer workloads

0

20

40

60

80

100

120

0
7

10
8

20
8

30
10

40
11

50
14

60
17

70
22

80
32

90
58

100
239

R
el

at
iv

e
th

ro
u

gh
p

u
t

%

% of file in page cache

SPIN P2PDMA CPUIO

Thpt [MB/sec]:

*512B reads

No data in P$,
less than 5%

overhead

All data in P$,
less than 5%

overhead

29ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Implementation
& Evaluation

GPU Accelerated Log Server

- Store a log into SSD

- Analyze log using GPU acceleration for string matching

- Similar to fail2ban

Real time configuration:
- Log arrives to server
- Server stores logs in SSD
- GPU analyzes logs by reading file

Offline configuration:
- Log is already in SSD

- GPU analyzes logs by reading file

30ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Implementation
& Evaluation

GPU Accelerated Log Server

- Store a log into SSD

- Analyze log using GPU acceleration for string matching

- Similar to fail2ban

Real time configuration:
- Log arrives to server
- Server stores logs in SSD
- GPU analyzes logs by reading file

Offline configuration:
- Log is already in SSD

- GPU analyzes logs by reading file

We want our application to
work efficiently in any

configuration

31ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Implementation
& Evaluation

GPU Accelerated Log Server

Real Time configuration

0

500

1000

1500

2000

2500

P2P CPUIO SPIN

B
W

 [
M

B
P

S]

Transfer Mechanism

Offline configuration

0

500

1000

1500

2000

2500

3000

P2P CPUIO SPIN

B
W

 [
M

B
P

S]

Transfer Mechanism

Data resides in p$ and SSD
SPIN reads data from P$

Data resides in SSD only
SPIN utilizes P2P

I/
O

 C
o

n
te

n
ti

o
n

A
d

d
it

io
n

al
 “

h
o

p
”

32ACSL - TechnionYou are here

Summary

Background

Observations

Objective

SPIN

Conclusion

SPIN:
Conclusion

Thank you!

shaiberg1@tx.technion.ac.il github.com/acsl-technion/spin

- SPIN seamlessly integrates P2P as a first class citizen

into the file I/O stack

- SPIN utilizes several mechanisms to speed up data

transfers transparently

- With SPIN, the same code performs well under all

setups

