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Multicore Energy Disproportionality
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•Multicore processors are not energy proportional, 
despite all the efforts

•Aggressive hardware sharing
– Shared clocking circuitry forces cores to 
operate at the same frequency
– Power-gating enables low power idle state, but 
deep idle states can only be entered during 
simultaneous sleep



Multicore Energy Disproportionality
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Device: Kirin 925 SoC on Huawei Mate7 Smartphone, cluster has four cores 

State Name Power Description

  C0
Wait for 
interrupt 
(WFI)

403 
mW

Individual core clock gated.

  C1
Individual 
powerdown

365 
mW

- Individual core power     
gated.
- L1 cache content lost

  C2
Cluster
powerdown

214 
mW

- Enter during 
simultaneous sleeps

- All state (e.g. L2$) lost



Multicore Energy Disproportionality
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• Very energy efficient during peak utilization

• Consume minimum power when all cores are quiescent

• Inefficient when only one core is utilized
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Kirin 925 based Huawei Mate7



Mobile Apps Lack Parallelism
• Typical smartphone applications are built on event-

driven, UI-centric framework and serve a single user

• Do not have sufficient parallelism to utilize multiple       
CPU cores simultaneously

• On a quad-core system, of all the non-idle time:
– All four cores are utilized: less than 1%
–Only one core is utilized: 68%
– Test conducted with a variety of popular mobile 

applications (Gao et al. ISPASS’15)



Opportunity
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• Hardware energy disproportionality and Lack of thread 
level parallelism —> Computing resources at 
additional cores are available at a deep energy 
discount

• Utilize these resources to run best-effort tasks: useful 
tasks on a smartphone but do not involve direct user 
interaction (thus its time of execution is flexible)



Best-effort Tasks

8

Upload and download System maintenance work 

Background sensing Proactive Tasks



Energy Discounted Computing
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• Bundling tasks to save energy on smartphones is not 
new 
– Lane et al. [Sensys 2013]: Piggybacking sensing 

activities
– Nikzad et al. [ICSE 2014]: Annotation language for 

developers to delay certain work

• Our contribution: Maximum energy discount is only 
realized when the co-run best-effort task execution does 
not elevate the overall system power state. 



Best-effort task execution must NOT
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• Disrupt the multicore CPU idle state [“C” state]
– Follow the step of interactive task execution
– Non-work-conserving-scheduling

• Increase the core frequency [“P” state]
– Invisible to the system frequency adjustment
– Do not affect frequency scaling for interactive tasks

• Affect the smartphone’s suspension period [“S” state]

Hide behind the CPU power profile of interactive tasks



Implementation (Huawei Mate7, Android 4.4, Linux 3.10.30)
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• Best-effort tasks are put into a control group

• Idle state preservation:
– Each core maintains a status bit: BUSY, IDLE, 

BEST-EFFORT
– Regular tasks have absolute priority over best-effort 

ones
– If a best-effort task is picked, check sibling cores to 

see if anyone is BUSY. If no one is BUSY, enter idle 
state directly (non-work-conserving scheduling)



Implementation
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• CPU frequency preservation:
– DVFS is controlled by cpufreq governor, adjust 

frequency based on load
– Best-effort tasks are ignored during load calculation
– Performance of regular tasks are not affected 

• Suspension state preservation:
– Best-effort tasks are not allowed to hold wakelocks 



Contention Mitigation
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• Co-run applications leads to contention on multicore 
resources, cause performance degradation to 
interactive applications

• Scheduler priority modification does not remove 
contention on shared resources, i.e. cache and 
memory bandwidth

• Monitoring last-level-cache miss rate using 
performance counters and throttle best-effort tasks 
accordingly



Implementation
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• Contention mitigation:
– Monitor last-level-cache miss rate
– ARMV7_A15_PERFCTR_L2_CACHE_REFILL_RE

AD/WRITE
– Sample every 20 ms
– Stop scheduling best-effort tasks when the miss 

rate reaches certain threshold

• Overhead: less than 1% for all of our benchmarks



Evaluation: Setup
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• Device: Huawei Mate7 (late 2014)
– 1.8 GHz ARM Cortex-A15 Quad Core
– 2MB L2 cache, 2GB RAM
– Power measurement using Monsoon power meter 

with smartphone battery detached 



Evaluation: Benchmark
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• Interactive application:
– Bbench: load locally cached websites
– Angry bird: casual game

• Best-effort tasks: Spin, Compression, Encryption, 
AppOpt, FaceAnalysis



Evaluation: Test flow
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• Use automate UI testing tools (RERAN[1]) to minimize 
variations

• Launch two applications roughly at the same time

• Configure the workload such that application 
executions mostly overlap

[1] Gomez et al. ICSE’13

Discount

model based library, to process images and extract posi-
tions of landmark features. This is particularly useful in
facial expression analysis. We use it to represent emerg-
ing passive sensing applications. To make the experi-
ment reproducible, we use locally cached face images as
its input.

Input Workload Application workloads are carefully
chosen such that the executions of the interactive appli-
cation and the best-effort task can mostly overlap with
each other when using our co-run strategy. Specifically,
Bbench are configured to load 15 websites with two sec-
onds delay (to mimic user think time) between each web-
site. The whole session takes roughly 44 seconds to
complete. Angry Bird, on the other hand, is played for
42 seconds. Best-effort tasks are launched in the back-
ground shortly after the interactive application starts and
the amount of the work is configured such that they can
finish right before the interactive application ends under
the most strict (throttling-based) best-effort task schedul-
ing policy. To make experiments reproducible, we use
RERUN [11], a record and replay tool for the Android
operating system, to automate the test flow. User inter-
action sessions are recorded into a sequence of touch and
system events. Later, these events are sent back to the
phone to replay user interactions with precise timing and
accuracy.

5.2 Energy Efficiency

To evaluate the energy efficiency of our system when
running best-effort tasks with interactive applications,
we run Bbench and Angry Bird with each of the five best-
effort workloads. We run each pair under two different
scheduling strategies:

• default, where there is no change to the original sys-
tem behavior;

• power-states-preservation scheduling, where our
non-work-conserving scheduling techniques are
used.

Figure 2 and Figure 3 show the result. Energy discount
(s ) of the best-effort task is calculated as

s = 1� Eco-run �Einteractive alone

Ebest-effort alone
(1)

where Ebest-effort is the amount of energy consumed by the
best-effort task running alone under the default system
setting, Eco-run is the total system energy consumption
of the co-run execution and Einteractive is the total system
energy consumption when running the interactive appli-
cation alone. Each of our energy metrics measures the

active energy—those consumed above the system idle
power consumption.

The result clearly shows that our system can realize
deep energy discount in all co-run scenarios, ranging
from 23% to 71%. We attribute this to the fact that the
overall CPU power states are preserved—the execution
of the best-effort task is completely hidden behind the
interactive application power profile.
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Figure 2: Experimental results of running interactive ap-
plication BBench web browsing with various best-effort
tasks under different scheduling strategies. We show
the best-effort task energy discount (A), best-effort task
elapsed time (B), and impact on BBench’s interactivity
(webpage rendering slowdown) (C).

This is further illustrated in Figure 4. When Bbench
running alone, the current trace shows the typical burst-
then-idle pattern that is common on smartphones due to
the long user think time between interactions. During
these idle periods, the system is able to enter deep sleep
states to conserve energy (trough in the current wave-
form). However, best-effort tasks, without any control,
will disrupt these deep sleep states. In addition, during
the burst period, simultaneous executions of both tasks
would increase the system load and drive up the CPU fre-

7
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Energy Discount
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“P” state disruption
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Current Wave (Bbench + Spin)

“C” state and “P”
state disruption
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Energy Discount
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Abundance of Discounted CPU Cycles
Category Abundance Frames of 

face analyzed
Minutes of video 

encrypted
Web 

browsing 1.63 30 21

Video
streaming 2.41 4 3

Gaming 1.61 21 15

Navigation 2.42 13 9

Messaging 2.88 3 2

Social 
network 1.88 12 9

* Abundance of discounted CPU cycles is the ratio of energy discounted CPU 
cycles to the active CPU cycles used by the corresponding interactive application. 



Summary
- Energy disproportionality of multicore CPUs and lack of 

parallelism of smartphone applications provide abundant 
opportunities to run useful best-effort tasks at deep energy 
discount

- Maximum energy discount can only be realized when overall 
system power states are preserved

- Contention-aware scheduling based on monitoring hardware 
performance counters is effective in mitigating interactivity 
slowdown

- Experiments show significant energy savings (up to 63%) and 
little performance impact (less than 4% in the worst case) to 
the smartphone interactivity
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