
Energy Discounted Computing
on Multicore Smartphones

Meng Zhu and Kai Shen

Power- Smartphones

2

Ful &
Hungry

Multi-core Popularity and Low Battery Anxiety

Tri-cluster
Deca-core

Multicore Energy Disproportionality

3

•Multicore processors are not energy proportional,
despite all the efforts

•Aggressive hardware sharing
– Shared clocking circuitry forces cores to
operate at the same frequency
– Power-gating enables low power idle state, but
deep idle states can only be entered during
simultaneous sleep

Multicore Energy Disproportionality

4
Device: Kirin 925 SoC on Huawei Mate7 Smartphone, cluster has four cores

State Name Power Description

 C0
Wait for
interrupt
(WFI)

403
mW

Individual core clock gated.

 C1
Individual
powerdown

365
mW

- Individual core power
gated.
- L1 cache content lost

 C2
Cluster
powerdown

214
mW

- Enter during
simultaneous sleeps

- All state (e.g. L2$) lost

Multicore Energy Disproportionality

5

• Very energy efficient during peak utilization

• Consume minimum power when all cores are quiescent

• Inefficient when only one core is utilized

0 1 2 3 4
0

1

2

3

4

Number of active CPUs

Po
w

er
 (W

at
ts

)

Tegra 3 based Nexus 7 tablet

0 4 8
0

1

2

3

4

Number of active CPUs
Po

w
er

 (W
at

ts
)

Kirin 925 based Huawei Mate7

Mobile Apps Lack Parallelism
• Typical smartphone applications are built on event-

driven, UI-centric framework and serve a single user

• Do not have sufficient parallelism to utilize multiple
CPU cores simultaneously

• On a quad-core system, of all the non-idle time:
– All four cores are utilized: less than 1%
–Only one core is utilized: 68%
– Test conducted with a variety of popular mobile

applications (Gao et al. ISPASS’15)

Opportunity

7

• Hardware energy disproportionality and Lack of thread
level parallelism —> Computing resources at
additional cores are available at a deep energy
discount

• Utilize these resources to run best-effort tasks: useful
tasks on a smartphone but do not involve direct user
interaction (thus its time of execution is flexible)

Best-effort Tasks

8

Upload and download System maintenance work

Background sensing Proactive Tasks

Energy Discounted Computing

9

• Bundling tasks to save energy on smartphones is not
new
– Lane et al. [Sensys 2013]: Piggybacking sensing

activities
– Nikzad et al. [ICSE 2014]: Annotation language for

developers to delay certain work

• Our contribution: Maximum energy discount is only
realized when the co-run best-effort task execution does
not elevate the overall system power state.

Best-effort task execution must NOT

10

• Disrupt the multicore CPU idle state [“C” state]
– Follow the step of interactive task execution
– Non-work-conserving-scheduling

• Increase the core frequency [“P” state]
– Invisible to the system frequency adjustment
– Do not affect frequency scaling for interactive tasks

• Affect the smartphone’s suspension period [“S” state]

Hide behind the CPU power profile of interactive tasks

Implementation (Huawei Mate7, Android 4.4, Linux 3.10.30)

11

• Best-effort tasks are put into a control group

• Idle state preservation:
– Each core maintains a status bit: BUSY, IDLE,

BEST-EFFORT
– Regular tasks have absolute priority over best-effort

ones
– If a best-effort task is picked, check sibling cores to

see if anyone is BUSY. If no one is BUSY, enter idle
state directly (non-work-conserving scheduling)

Implementation

12

• CPU frequency preservation:
– DVFS is controlled by cpufreq governor, adjust

frequency based on load
– Best-effort tasks are ignored during load calculation
– Performance of regular tasks are not affected

• Suspension state preservation:
– Best-effort tasks are not allowed to hold wakelocks

Contention Mitigation

13

• Co-run applications leads to contention on multicore
resources, cause performance degradation to
interactive applications

• Scheduler priority modification does not remove
contention on shared resources, i.e. cache and
memory bandwidth

• Monitoring last-level-cache miss rate using
performance counters and throttle best-effort tasks
accordingly

Implementation

14

• Contention mitigation:
– Monitor last-level-cache miss rate
– ARMV7_A15_PERFCTR_L2_CACHE_REFILL_RE

AD/WRITE
– Sample every 20 ms
– Stop scheduling best-effort tasks when the miss

rate reaches certain threshold

• Overhead: less than 1% for all of our benchmarks

Evaluation: Setup

15

• Device: Huawei Mate7 (late 2014)
– 1.8 GHz ARM Cortex-A15 Quad Core
– 2MB L2 cache, 2GB RAM
– Power measurement using Monsoon power meter

with smartphone battery detached

Evaluation: Benchmark

16

• Interactive application:
– Bbench: load locally cached websites
– Angry bird: casual game

• Best-effort tasks: Spin, Compression, Encryption,
AppOpt, FaceAnalysis

Evaluation: Test flow

17

• Use automate UI testing tools (RERAN[1]) to minimize
variations

• Launch two applications roughly at the same time

• Configure the workload such that application
executions mostly overlap

[1] Gomez et al. ICSE’13

Discount

model based library, to process images and extract posi-
tions of landmark features. This is particularly useful in
facial expression analysis. We use it to represent emerg-
ing passive sensing applications. To make the experi-
ment reproducible, we use locally cached face images as
its input.

Input Workload Application workloads are carefully
chosen such that the executions of the interactive appli-
cation and the best-effort task can mostly overlap with
each other when using our co-run strategy. Specifically,
Bbench are configured to load 15 websites with two sec-
onds delay (to mimic user think time) between each web-
site. The whole session takes roughly 44 seconds to
complete. Angry Bird, on the other hand, is played for
42 seconds. Best-effort tasks are launched in the back-
ground shortly after the interactive application starts and
the amount of the work is configured such that they can
finish right before the interactive application ends under
the most strict (throttling-based) best-effort task schedul-
ing policy. To make experiments reproducible, we use
RERUN [11], a record and replay tool for the Android
operating system, to automate the test flow. User inter-
action sessions are recorded into a sequence of touch and
system events. Later, these events are sent back to the
phone to replay user interactions with precise timing and
accuracy.

5.2 Energy Efficiency

To evaluate the energy efficiency of our system when
running best-effort tasks with interactive applications,
we run Bbench and Angry Bird with each of the five best-
effort workloads. We run each pair under two different
scheduling strategies:

• default, where there is no change to the original sys-
tem behavior;

• power-states-preservation scheduling, where our
non-work-conserving scheduling techniques are
used.

Figure 2 and Figure 3 show the result. Energy discount
(s) of the best-effort task is calculated as

s = 1� Eco-run �Einteractive alone

Ebest-effort alone
(1)

where Ebest-effort is the amount of energy consumed by the
best-effort task running alone under the default system
setting, Eco-run is the total system energy consumption
of the co-run execution and Einteractive is the total system
energy consumption when running the interactive appli-
cation alone. Each of our energy metrics measures the

active energy—those consumed above the system idle
power consumption.

The result clearly shows that our system can realize
deep energy discount in all co-run scenarios, ranging
from 23% to 71%. We attribute this to the fact that the
overall CPU power states are preserved—the execution
of the best-effort task is completely hidden behind the
interactive application power profile.

Spin Compress Encrypt AppOpt FaceAnalysis
0

10%

20%

30%

40%

En
er

gy
 d

isc
ou

nt
 ra

tio

(A) Best−effort task energy discount

Default co−run
Power states preservation scheduling
Power states preservation and
contention−aware scheduling

Spin Compress Encrypt AppOpt FaceAnalysis
0

10

20

30

40

El
ap

se
d

tim
e

(in
 s

ec
on

ds
)

(B) Best−effort task elapsed time

Spin Compress Encrypt AppOpt FaceAnalysis
0

2%

4%

6%

8%

Best−effort tasksW
eb

pa
ge

 re
nd

er
in

g
slo

wd
ow

n
ra

tio (C) Impact on BBench interactivity

Figure 2: Experimental results of running interactive ap-
plication BBench web browsing with various best-effort
tasks under different scheduling strategies. We show
the best-effort task energy discount (A), best-effort task
elapsed time (B), and impact on BBench’s interactivity
(webpage rendering slowdown) (C).

This is further illustrated in Figure 4. When Bbench
running alone, the current trace shows the typical burst-
then-idle pattern that is common on smartphones due to
the long user think time between interactions. During
these idle periods, the system is able to enter deep sleep
states to conserve energy (trough in the current wave-
form). However, best-effort tasks, without any control,
will disrupt these deep sleep states. In addition, during
the burst period, simultaneous executions of both tasks
would increase the system load and drive up the CPU fre-

7

18

Energy Discount

Spin Compress Encrypt AppOpt Face
0

20%

40%

60%

En
er

gy
 d

is
co

un
t r

at
io AngryBird

Spin Compress Encrypt AppOpt Face
0

10%

20%

30%

40%

En
er

gy
 d

is
co

un
t r

at
io Bbench

Spin Compress Encrypt AppOpt Face0
20%
40%
60%

En
er

gy
 d

isc
ou

nt
 ra

tio AngryBird

Default co−run
Power states preservation scheduling

“P” state disruption

19

Current Wave (Bbench + Spin)

“C” state and “P”
state disruption

0 20 40
0

1

Time (Seconds)

 C
ur

re
nt

 (A
m

ps
) Bbench running alone

0 20 40
0

1

Time (Seconds)

Bbench + Spin
default co−run

0 20 40
0

1

Time (Seconds)

Bbench + Spin
with power state

preserving scheduling

20

Energy Discount

Spin Compress Encrypt AppOpt Face
0

20

40

60
FP

S
AngryBird

Spin Compress Encrypt AppOpt Face
0

2%
4%
6%
8%

Sl
ow

do
w

n
ra

tio

Bbench

Spin Compress Encrypt AppOptFaceAnalysis0
20%
40%
60%

En
er

gy
 d

isc
ou

nt
 ra

tio

Default co−run
Power states preservation scheduling
Power states preservation and
contention−aware scheduling

Abundance of Discounted CPU Cycles
Category Abundance Frames of

face analyzed
Minutes of video

encrypted
Web

browsing 1.63 30 21

Video
streaming 2.41 4 3

Gaming 1.61 21 15

Navigation 2.42 13 9

Messaging 2.88 3 2

Social
network 1.88 12 9

* Abundance of discounted CPU cycles is the ratio of energy discounted CPU
cycles to the active CPU cycles used by the corresponding interactive application.

Summary
- Energy disproportionality of multicore CPUs and lack of

parallelism of smartphone applications provide abundant
opportunities to run useful best-effort tasks at deep energy
discount

- Maximum energy discount can only be realized when overall
system power states are preserved

- Contention-aware scheduling based on monitoring hardware
performance counters is effective in mitigating interactivity
slowdown

- Experiments show significant energy savings (up to 63%) and
little performance impact (less than 4% in the worst case) to
the smartphone interactivity

Energy Discounted Computing on
Multicore Smartphones

Meng Zhu and Kai Shen

Thank you
Questions?

