D

SSICLOPS

StackMap: Low-Latency Networking
with the OS Stack and Dedicated NICs

Kenichi Yasukata (Keio University*), Michio Honda,
Douglas Santry, Lars Eggert (NetApp)

June 22nd @ USENIX ATC 2016

*Work while an intern at NetApp

1 © 2016 NetApp, Inc. All rights reserved.

i NetApp

Overview

= Message-oriented communication over TCP is common
= e.g., HTTP, memcached, CDNs

= Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

= [mprove socket API?

= Limited Improvements StackMap achieves high performance
= User-space TCP/IP stack? with the OS TCP/IP
= Maintaining and updating today’s mm Linux '
complex TCP is hard ~ mm Seastar .

StackMa

Throughput [Gb/s]
S = N W BN

1 20 40 60 80 100
Concurrent TCP Connections
2 M NetApp

Background

= Message-oriented communication over TCP (e.g., HTTP, memcached)

-y

= Many concurrent connections - S

= Small messages ,' ‘\

= High packet rates

Request (e.g., HTTP GET)
Response (e.g., HTTP OK)

3 M NetApp

Message Latency Problem

(while (1) { \

n = epoll_wait(fds);

for (i=0; i <n;i++){
read(fdsl[i], buf)
http_ok(buf);
write(fdsl[i], buf);

}

_ /

= Many requests are processed in
each epoll_wait() cycle
= New requests are queued in the kernel

10V

| | | |
e+ # of descriptors returned by epoll_wait()

Descriptors [#]

0 20 40 60 80 100

Concurrent TCP Connections
T T

th'y, . !
— 99" %ile latency

@400 ~ --- mean latency
=

= 300

Q

E) 200

<

— 100

0 | | | |
0 20 40 60 80 100

Concurrent TCP Connections

Where Could We Improve?

= Processingcostof TCP/IP protocolis not high
= TCP/IP takes 1.48 us, out of 3.75 us server processing

= 2 RTT reported by the clientappis 9.75 us
= The rest of 6 us come from minimum hard/soft indirection
= netmap-based ping-pong (network stack bypass) reports 5.77 us

0.60 0.72 0.53
HTTP GET (96B) AL I TCPIP | SocketVFS | App: Ml 0.48
HTTP OK (127B @ 0.43 0.76 0.22 (us)

5 M NetApp

Where Could We Improve? epoll_wait() processing delay

6 [+—— mean Wilth stddev SR 1
T 5 |[poeeuseco00a0u00e00300e0800030000890¢30000809 001 s -
= Processingcostof TCP/IPprotocc = , L.T | =
2 N
- TCP/IP takes 1.48 us, outof 3.75u 5 50 I +|} B B
2 HL w11 1 | |
= 2 RTT reported by the clientapp is = G *i : i ---------------------------- i
= The rest of 6 us come from minimu 0o 30 10 &0 20 100
= netmap-based ping-pong (network s. Registered Descriptors [#]
0.60 0.72 Swils
HTTP GET (96B) [P0 I TCP/IP [SocketvFs | App | Ml 0.48
PLINIASLSEINN 0.43 0.76 0.22 (us)

6 M NetApp

Takeaway

= Conventional system introduces end-to-end latency of 10’s to 100’s of us
= Results of processing delays

= Socket APl comes at a significant cost
= read()/write()/epoll_wait() processing delay

= Packet 1/O is expensive

= TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but
need to improve APl and packet 1/0

7 M NetApp

StackMap Approach

= Dedicating a NIC to an
application

= Common for today’s
high-performance systems

= Similar to OS-bypass
TCP/IPs

Regular app

StackMap app

Socket API

TCP/IP/Eth

Linux packet 1/O

Device drivers

NIC

NIC

M NetApp

StackMap Approach

Regular app

StackMap app

= Dedicating a NIC to an o
application 2
= Common for today’s =

high-performance systems £
= Similar to OS-bypass L

TCP/IPs
= TCP/IP stack in the kernel

= State-of-the-art features
= Active updates and maintenance

Socket API

TCP/IP/Eth

Linux packet 1/O

Device drivers

NIC

NIC

M NetApp

StackMap Architecture

1. Socket API for control path 5 | Regular app StackMap app
= socket(), bind(), listen() 2 :
.. 1. {}
2. Netmap API for data path e 2,
(extended) aE: Socket API }netmap framework
= Syscall and packet I/O ~<
batching, zero copy, run-to- U2 FRELEE I
completion Linux packet 1/0 {}
4.
3. Persistent, fixed-size Device drivers {}
sk _buffs NG
= Efficiently call into kernel TCP/IP NIC

4. Static packet buffers and

DMA mapping Neta
10 etApp

StackMap Data Path API

= TX
= Put data and fd in each slot
= Advance the head pointer

= Syscall to start network stack
processing and transmission

11

data, fd

M NetApp

StackMap Data Path API

= TX
= Put data and fd in each slot data, fd
= Advance the head pointer ‘ ‘ ‘ ‘ ‘ ‘ A,I/
= Syscall to start network stack
processing and transmission tail = head
= RX
= Kernel puts fd on each FD Array Scratchpad nxt 2 3\
buffer 01l ° idX » O 2 4 5
+ App can traverse aring 1]\ 13 fd4 ‘fd3 | o ‘fd4‘fd5 |0
by descriptors Rifs1 14 ata head mm tail

[5]

[J
(J
1
0
4
o
[
o

12

M NetApp

Experimental Results

* [mplementation = Setup
= Linux 4.2 with 228 LoC changes = Two machines with Xeon E5-2680 v2 (2.8
m netmap with 56 LoC Changes -3.6 GhZ) Intel 82599 10 GbE NIC
= A new kernel module with 2269 LoC = Server: Linux or StackMap

= Client: Linux with WRK http benchmark
tool or memaslap memcached benchmark
tool

13 M NetApp

Basic Performance

= Simple HTTP server

= Serving 1KB messages (single core)

14

| |
Linux (99" %ile)
Linux (mean)
StackMap (99th ile)
StackMap (mean)

S 200 o]
% R /
—~ 100 B
0 [| | |
0 20 40 60 80 100
Concurrent TCP Connections
8 | | | |
2 Linux
@ 6 StackMap
24 :
=
1))
2> |
=
H
0 |
0 20 40 60 80 100

Concurrent TCP Connections

M NetApp

400

Memcached Performance

7 —e—ILinux T // "
= 3001~ 5 Seastar T &
> 70oL —~ StackMap // %/ig
g oy e
_ 2 100 i _
= Serving 1KB messages - e | | | |
= single core 1 20 40 60 80 100
= Seastaris a fast user-space Concurrent TCP Connections
TCP/IP on on top of DPDK* mm Linux | | |
~ mmm Seastar
. mm StackMa

Throughput [Gb/s]
S = N W AN

1 20 40 60 80 100

Concurrent TCP Connections
I

= Serving 64B messages
= 1-8 CPU cores

[LiIIIUX
2| mmm Seastar
mm StackMap

Throughput [Gb/s]

*http://www.seastar-project.org/

1 4 8
15 © 2016 NetApp, Inc. Al rights reserved. CPU cores [#] n NetApp

Discussion

= What makes StackMap fast?

= Techniques used by OS-bypass TCP/IPs

= Run-to-completion, static packet buffers, zero copy, syscall and I/O batching
and new API

= Limitations and Future Work

= Safely sharing packet buffers

= |f kernel-owned buffers are modified by a misbehaving app, TCP might fall into
inconsistent state

16 M NetApp

Related Work

= Kernel-bypass TCP/IPs

= |X [OSDI’14], Arrakis [OSDI'14], UTCP [CCR’14], Sandstorm [SIGCOMM’14], mTCP [NSDI’14],
Seastar

= Socket APl enhancements
= MegaPipe [OSDI'12], FlexSC [OSDI’10], KCM [Linux]

= [mproving OS stack with fast packet 1/O
= mSwitch [SOSR’15]

= |n-stack improvement
= FastSocket [ASPLOS 106]

= Running kernel stack in user-space
= Rump [AsiaBSDCon’09], NUSE [netdev’15]

17 M NetApp

Conclusion

Message-oriented communicationover TCP

Kernel TCP/IP is fast
= But socket APl and packet I/O are slow

We can bring the most of techniques used by kernel-bypass stacks into the OS stack

Latency reduction by 4-80% (average) or 2-70% (99" %tile)

= Throughputimprovementby 4-391%

18 M NetApp

