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Overview

= Message-oriented communication over TCP is common
= e.g., HTTP, memcached, CDNs

= Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

= [mprove socket API?

= Limited Improvements StackMap achieves high performance
= User-space TCP/IP stack? with the OS TCP/IP
= Maintaining and updating today’s mm Linux '
complex TCP is hard ~ mm Seastar .
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Background

= Message-oriented communication over TCP (e.g., HTTP, memcached)

-y

= Many concurrent connections - S

= Small messages ,' ‘\

= High packet rates

Request (e.g., HTTP GET)
Response (e.g., HTTP OK)
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Message Latency Problem

(while (1) { \

n = epoll_wait(fds);

for (i=0; i <n;i++){
read(fdsl[i], buf)
http_ok(buf);
write(fdsl[i], buf);

}

\_ /

= Many requests are processed in
each epoll_wait() cycle
= New requests are queued in the kernel
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Where Could We Improve?

= Processingcostof TCP/IP protocolis not high
= TCP/IP takes 1.48 us, out of 3.75 us server processing

= 2 RTT reported by the clientappis 9.75 us
= The rest of 6 us come from minimum hard/soft indirection
= netmap-based ping-pong (network stack bypass) reports 5.77 us

0.60 0.72 0.53
HTTP GET (96B) AL I TCPIP | SocketVFS | App: Ml 0.48
HTTP OK (127B @ 0.43 0.76 0.22 (us)
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Where Could We Improve? epoll_wait() processing delay
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Takeaway

= Conventional system introduces end-to-end latency of 10’s to 100’s of us
= Results of processing delays

= Socket APl comes at a significant cost
= read()/write()/epoll_wait() processing delay

= Packet 1/O is expensive

= TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but
need to improve APl and packet 1/0
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StackMap Approach

= Dedicating a NIC to an
application

= Common for today’s
high-performance systems

= Similar to OS-bypass
TCP/IPs

Regular app

StackMap app

Socket API

TCP/IP/Eth

Linux packet 1/O

Device drivers

NIC

NIC
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StackMap Approach

Regular app

StackMap app

= Dedicating a NIC to an o
application 2
= Common for today’s =

high-performance systems £
= Similar to OS-bypass L

TCP/IPs
= TCP/IP stack in the kernel

= State-of-the-art features
= Active updates and maintenance

Socket API

TCP/IP/Eth

Linux packet 1/O

Device drivers

NIC

NIC
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StackMap Architecture

1. Socket API for control path 5 | Regular app StackMap app
= socket(), bind(), listen() 2 :
............................................ 1. {}
2. Netmap API for data path e 2,
(extended) aE: Socket API }netmap framework
= Syscall and packet I/O ~<
batching, zero copy, run-to- U2 FRELEE I
completion Linux packet 1/0 {}
4.
3. Persistent, fixed-size Device drivers {}
sk _buffs NG
= Efficiently call into kernel TCP/IP NIC

4. Static packet buffers and

DMA mapping Neta
10 etApp



StackMap Data Path API

= TX
= Put data and fd in each slot
= Advance the head pointer

= Syscall to start network stack
processing and transmission

11

data, fd
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StackMap Data Path API

= TX
= Put data and fd in each slot data, fd
= Advance the head pointer ‘ ‘ ‘ ‘ ‘ ‘ A,I/
= Syscall to start network stack
processing and transmission tail = head
= RX
= Kernel puts fd on each  FD Array Scratchpad nxt 2 3\
buffer 01l ° idX » O 2 4 5
+ App can traverse aring 1]\ 13 fd4 ‘fd3 | o ‘fd4‘fd5 |0
by descriptors Rifs1 14 ata head mm tail
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Experimental Results

* [mplementation = Setup
= Linux 4.2 with 228 LoC changes = Two machines with Xeon E5-2680 v2 (2.8
m netmap with 56 LoC Changes -3.6 GhZ) Intel 82599 10 GbE NIC
= A new kernel module with 2269 LoC = Server: Linux or StackMap

= Client: Linux with WRK http benchmark
tool or memaslap memcached benchmark
tool
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Basic Performance

= Simple HTTP server

= Serving 1KB messages (single core)
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400

Memcached Performance
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= Seastaris a fast user-space Concurrent TCP Connections
TCP/IP on on top of DPDK* mm Linux | | |
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= Serving 64B messages
= 1-8 CPU cores
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*http://www.seastar-project.org/
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Discussion

= What makes StackMap fast?

= Techniques used by OS-bypass TCP/IPs

= Run-to-completion, static packet buffers, zero copy, syscall and I/O batching
and new API

= Limitations and Future Work

= Safely sharing packet buffers

= |f kernel-owned buffers are modified by a misbehaving app, TCP might fall into
inconsistent state
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Related Work

= Kernel-bypass TCP/IPs

= |X [OSDI’14], Arrakis [OSDI'14], UTCP [CCR’14], Sandstorm [SIGCOMM’14], mTCP [NSDI’14],
Seastar

= Socket APl enhancements
= MegaPipe [OSDI'12], FlexSC [OSDI’10], KCM [Linux]

= [mproving OS stack with fast packet 1/O
= mSwitch [SOSR’15]

= |n-stack improvement
= FastSocket [ASPLOS 106]

= Running kernel stack in user-space
= Rump [AsiaBSDCon’09], NUSE [netdev’15]
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Conclusion

Message-oriented communicationover TCP

Kernel TCP/IP is fast
= But socket APl and packet I/O are slow

We can bring the most of techniques used by kernel-bypass stacks into the OS stack

Latency reduction by 4-80% (average) or 2-70% (99" %tile)

= Throughputimprovementby 4-391%
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