Tucana: Design and Implementation of a Fast and Efficient Scale-up Key-value store

Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos Bilas
Key-value Stores – Important Building Block

- Key-value store: A dictionary for **arbitrary** key-value pairs
 - Used extensively: web indexing, social networks, data analytics
 - Supports inserts, deletes, point (lookup) and range queries (scan)

- Today, key-value stores **inefficient**
 - Consume a lot of CPU cycles
 - Mostly optimized for HDDs – right decision until today
Challenges

- Overhead is related to several aspects of key-value stores
 - Indexing data structure
 - DRAM caching and I/O to devices
 - Persistence and failure atomicity
- Our goal: improve CPU efficiency of key-value stores
 - Design for fast storage devices (SSDs)
 - Bottleneck shifts from device performance to CPU overhead
Outline of this talk

- Discuss our design and motivate decisions
 - Indexing data structure
 - DRAM caching and I/O to devices
 - Persistence and failure atomicity
 - H-Tucana: An HBase Integration
- Evaluation
- Conclusions
Write Optimized Data Structures (WODS)

- Inserts are important for key-value stores
- Need to avoid a single I/O per insert
- Main approach: Buffer writes in some manner
 - ... and use single I/O to the device for multiple inserts
 - Examples: LSM-Trees, B^{ϵ}-Trees, Fractal Trees
- Most popular: LSM-Trees
 - Used by most key-value stores today
 - Great for HDDs - always perform large sequential I/Os
LSM-Trees

- Data in large containers - leads to large/sequential I/O
- **Great for HDDs!** However, they require **compactions**
- Sorting containers to reduce index size and fit in memory
- High overhead: **CPU processing and I/O amplification**
SSDs vs. HDDs

Throughput (MB/s) vs. Request size (kB)

Writes
- SSD(2010)-iodepth 1
- SSD(2010)-iodepth 32
- SSD(2015)-iodepth 1
- SSD(2015)-iodepth 32
- HDD(2009)-iodepth 1
- HDD(2009)-iodepth 32

Reads
Bε-Trees

- B-Tree variant that uses buffering to improve inserts
- Similar complexity as B-Tree for point, range queries
- No compactions – unsorted buffers, full index
- Better CPU overhead and I/O amplification
- Worse I/O randomness and size
B$^\varepsilon$-Trees

- Each internal node has a persistent buffer
- Buffers “log” multiple inserts and use one I/O to device
B^ε-Trees

- Each internal node has a persistent buffer
- Buffers “log” multiple inserts and use one I/O to device
Bε-Trees

- Each internal node has a persistent buffer
- Buffers “log” multiple inserts and use one I/O to device

Insert
Tucana B^ε-Tree

Un-Buffered Nodes

Buffered Nodes

Write Buffer
Tucana B^ϵ-Tree

Un-Buffered Nodes
Buffered Nodes
Write Buffer
Buffered Node Organization

- Searching buffered nodes requires accessing keys on device
- Tucana uses two optimizations for buffered nodes
 1) Include key prefixes (fixed size)
 - Eliminates 65%-75% of I/Os for keys in all queries
 2) Include hashes for full keys (fixed size)
 - Eliminates 98% of I/Os for keys in point queries
DRAM Caching – Device I/O

- Key-value stores use a user-space DRAM cache
 - Avoids system calls for hits - Explicit kernel I/O for misses
- However, hits incur overhead in user-space
 - Both index+data in every traversal – Not important for HDDs
Alternative: DRAM caching via mmap

- Use multiple regions/containers per device
- Each region contains allocator + multiple indexes
- mmap each region directly to memory
 - Same layout of metadata + data on device and in memory
- Hits via mapped virtual addresses do not incur overhead
- Misses do not require serialize/deserialize of index
- mmap introduces new challenges
mmap: Misses Cause Page Faults, Fetches, Evictions

- (1) We can improve inserts
- Inserts require a read-before-write I/O
- We insert only on newly allocated pages
- We detect and eliminate fetches to newly allocated pages
 - Requires a kernel module with access to allocator metadata
- (2) Still, no control over size, timing of I/Os + evictions
 - We use mmap hints to disable prefetching
 - Should examine these in detail in future work
Persistance And Recovery

- Typical for HDDs: Write-Ahead-Logging (WAL)
 - Sequential I/O and ability to batch I/Os – both good
 - However, double writes – first to log, then in-place
 - Incurs overhead for log management during recovery
- Alternative: Copy-On-Write (CoW)
 - Instantaneous recovery and amenable to versioning
 - Write-anywhere approach and modify pointers atomically
 - Single write, however, more random I/O
H-Tucana: An Hbase Integration

- Use Tucana to replace HBase’s LSM-based storage engine
- We keep HBase for
 - Metadata architecture
 - Fault tolerance
 - Data distribution
 - Load balancing
Outline of this talk

- Discuss our design and motivate decisions
- **Evaluation**
- Conclusions
Experimental Setup

- **Compare Tucana with RocksDB**
 - H-Tucana with HBase and Cassandra

- **Platform**
 - 2 * Intel Xeon E5520 with 48GB DRAM in total
 - 4 * Intel X25-E SSDs (32GB) in RAID0

- **YCSB – synthetic workloads**
 - Insert only, read only, and various mixes

- **Two datasets**
 - Small dataset fits in memory
 - Large dataset is twice the size of memory

- **We examine**
 - Efficiency - cycles/op
 - Throughput - ops/s
 - I/O amplification
Efficiency

- Improvement over RocksDB in terms of cycles/op
 - Small Dataset
 - 5.2x up to 9.2x
 - Large Dataset
 - 2.6x up to 7x
Throughput

- Comparison with RocksDB in terms of ops/sec
 - Small dataset
 - 2x up to 7x
 - 4.5x on average
Throughput

- Comparison with RocksDB in terms of ops/sec
 - Large dataset
 - 1.1x up to 2x
 - Device is the bottleneck
Tradeoff: Amplification vs. Randomness (Writes)

- FIO model for I/O pattern of Tucana and RocksDB
- Based on measurements: Tucana has 3.5x less I/O traffic but 49x smaller random I/Os
- For two SSD generations Tucana’s approach wins: 4.7x and 3.1x over RocksDB

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tucana</td>
<td>123</td>
<td>18K</td>
<td>133</td>
<td>32</td>
</tr>
<tr>
<td>RocksDB</td>
<td>435</td>
<td>884K</td>
<td>623</td>
<td>100</td>
</tr>
<tr>
<td>Ratio</td>
<td>3.5x</td>
<td>49x</td>
<td>4.7x</td>
<td>3.1x</td>
</tr>
</tbody>
</table>
Related Work

- Reducing I/O amplification in LSM-Trees
 - WiscKey[FAST’16]: compaction only for keys
 - LSM-trie[ATC’15]: trie of LSM, hash-based structure
 - VT-Tree[FAST’13]: less I/O via container merging
 - bLSM[SIGMOD’12]: bloom filters, compaction scheduling
- BetrFS[FAST’15]: B^ε-Trees for file system
Conclusions

- **Tucana**: An efficient key-value store in terms of cycles/op
 - Target fast storage devices
 - LSM → B*: overhead of I/O amplification & compactions
 - Explicit I/O → mmap: overhead of DRAM caching
 - WAL → CoW: overhead of recovery
- **Tucana**: Up to 9.2x/7x better efficiency/xput vs. RocksDB
- **H-Tucana**: Up to 8x/22x better efficiency vs. HBase/Cassandra
Questions?

Anastasios Papagiannis
Institute of Computer Science, FORTH – Heraklion, Greece
E-mail: apapag@ics.forth.gr
Web: http://www.ics.forth.gr/carv

Supported by European Commission under FP7 CoherentPaaS (FP7-ICT-611068), LeanBigData (FP7-ICT-619606), and NESUS COST Action IC1305