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The Challenge on To d a y 6 9/alue Stgre

ATrends on workloads

I Larger single-store capacity
AMulti-TB SSD
AFlash array of over 100 TB

I Smaller key-value items

Aln a Facebook KV pool99% of the items are

AlLarge metadata set on a single node



Consequences of a Large Metadata Set

A Less caching space for hot KV items.

I Low hit ratio compromises system throughput.

A Long warm-up time.

I It may take tens of minutes to read all metadata into memory.

A High read cost for out-of-core metadata.

iltos expensive to read multiple

A LevelDB has managed to reduce the metadata size.



L evelDB Reduces Metadata Size with SSTable

A To construct an SSTable:
T Sort data into a list.
I Build memory-efficient block-index.

I Generate Bloom filters to avoid unnecessary reads.

A How to support insertions on SSTable?
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Reorganizing Data Across Levels

A LSM-tree (Log-Structured Merge-tree)

I New items are first accumulated in MemTable.
I Each filled MemTable is converted to an SSTable at Level 0.

i LevelDB conducts compaction to merge the SSTables.

A A store can exponentially grow to several TBs with a
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A Closer Look at Compaction

Steps in compaction:

1. Read overlapping SSTables into memory.

2. Merge-Sort the data in memory to form a list of new SSTables.
3. Write the new SSTables onto the disk to replace the old ones.

In one compaction (1:10 size ratio): [ Memory }
A Read 11 tables
A Write 11 tables wililoy wielRe wiliide uitidle

A Add only 1 table to the lower level

45x WA for a 5-level store
(WA: write amplification)
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Compaction can be very Expensive

A The workload:
I PUT 2 billion items of random keys (~250GB).
I 16-byte key and 100-byte value.

A PUT throughput reduces to 18K QPS (2MB/s).

LevelDB's SET Throughput on 55D
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Metadata I/O iIs Inefficient

AFacts about Level DB6s met ad
A Block Index: ~12 bytes per block.
A Bloom filter: ~10 bits per key.

A How large is it in a 10-TB store of 100-byte KV items?
I 155GB metadata: 30 GB block index + 125 GB Bloom filter.

LevelDB's GET Throughput
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Our solution: LSM-trie

ABuild an ultra-large KV store for small data.
I Using a trie structure to improve compaction
efficiency.
I Clustering Bloom filters for efficiently reading out-

of-core metadata.



Organizing Tables in a Trie (Prefix Tree)

A KV items are located in the trie according to their hashed key.
A Each trie node contains a pile of immutable tables.

A The nodes at the same depth form a conceptual level.

A How does LSM-trie help with efficient compaction?

} Level O
} Level 1

Hash prefix: 00 10 11 ====-




Efficient Compaction in LSM-trie

Compaction steps:
1. Read tables from the parent node into memory.
2. Assign the items to new tables according to hash-prefixes.

3. Write new tables into its child nodes.
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Introducing HTable*

A HTable: Immutable hash-table of key-value items

I Each bucket has 4KB space by default.

A Some buckets have overflowed items.

I Migrating the overflowed items.
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Selecting Iltems for Migration

ASorting items in a bucket
A Migrating the items above the watermark (HashMark).
A Recording the HashMark and the corresponding IDs.

I 2B Source ID, 2B Target ID, 4B HashMark

HashMark: Oxa0 o

Move to another bucket
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Caching HashMarks for Efficient GETs

A Only cache HashMark for most overloaded buckets.

I 1.01 amortized reads per GET.

I A 1-TB store only needs ~400MB in-memory HashMark.
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Most Metadata Is in the Last Level

A The first four levels contain 1.9 GB Bloom filters (BF).

A The last level may contain over one hundred GB BFs.
AWe explicitly cache the BFs for Level 0 to Level 3.

AThe BFs at the last level are managed differently.

256 MB
2 GB

Data size distribution
across the levels:

- 147 GB data




Clustering Bloom Filter for Efficient Read

A Each hash(key) indicates a column of 4-KB buckets.
A We collect all the BFs in a column to form a BloomCluster.

A Each GET requires one SSD read for all the out-of-core BFs.

msmm HTable
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1 Bloom-filter

‘IIII -
a ]

/ Clusters of Bloom-Filters
0] LI T eeeeeseereeees I




Exploiting Full SSD Performance

A Using an additional small SSD to host BloomClusters.

I e.g.,a10-TB SSD for data + a 128-GB SSD for metadata.

A Plenty of memory space is left for your data cache!

A few GBs
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Performance Evaluation of PUT
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Write Amplification Comparison

Consistent 5x WA ratio



