
LSM-trie: An LSM-tree-based Ultra-Large

Key-Value Store for Small Data

Xingbo Wu

Yuehai Xu

Song Jiang

Zili Shao

The Hong Kong

Polytechnic University

The Challenge on Todayôs Key-Value Store

ÅTrends on workloads

ïLarger single-store capacity

ÅMulti-TB SSD

ÅFlash array of over 100 TB

ïSmaller key-value items

ÅIn a Facebook KV pool 99% of the items are Ò 68B.

ÅLarge metadata set on a single node

1

Consequences of a Large Metadata Set

ÅLess caching space for hot KV items.

ïLow hit ratio compromises system throughput.

ÅLong warm-up time.

ïIt may take tens of minutes to read all metadata into memory.

ÅHigh read cost for out-of-core metadata.

ïItôs expensive to read multiple pages to serve a single GET.

ÅLevelDB has managed to reduce the metadata size.

2

LevelDB Reduces Metadata Size with SSTable

ÅTo construct an SSTable:

ïSort data into a list.

ïBuild memory-efficient block-index.

ïGenerate Bloom filters to avoid unnecessary reads.

ÅHow to support insertions on SSTable?

3

[1,2,3,5,8,9] [10,11,13,15,16,18] [19,20,23,24,25]

1 10 19

4KB 4KB 4KB

Bloom filter

Get 20 Get 22

MemTable

Reorganizing Data Across Levels

ÅLSM-tree (Log-Structured Merge-tree)

ïNew items are first accumulated in MemTable.

ïEach filled MemTable is converted to an SSTable at Level 0.

ïLevelDB conducts compaction to merge the SSTables.

ÅA store can exponentially grow to several TBs with a

few levels.

1-13 14-26 27-37 38-49 50-62 63-74 75-86 87-99

1-25 26-50 51-77 78-99

1-99

Level 0

Level 1
Compaction

4

Very Expensive!

In one compaction (1:10 size ratio):

Å Read 11 tables

Å Write 11 tables

Å Add only 1 table to the lower level

45x WA for a 5-level store

(WA: write amplification)

A Closer Look at Compaction

Steps in compaction:

1. Read overlapping SSTables into memory.

2. Merge-Sort the data in memory to form a list of new SSTables.

3. Write the new SSTables onto the disk to replace the old ones.

76-79 80-8470-75 85-90

Memory

Disk

70-77 78-84 85-90

70-90

5

Level N+1

Level N

Compaction can be very Expensive

ÅThe workload:

ïPUT 2 billion items of random keys (~250GB).

ï16-byte key and 100-byte value.

ÅPUT throughput reduces to 18K QPS (2MB/s).

6

Metadata I/O is Inefficient

ÅFacts about LevelDBôs metadata:

ÅBlock Index: ~12 bytes per block.

ÅBloom filter: ~10 bits per key.

ÅHow large is it in a 10-TB store of 100-byte KV items?

ï155GB metadata: 30 GB block index + 125 GB Bloom filter.

7

~10% raw SSD IOPS

4-GB memory holds 25% of the

metadata for a 1-TB store.

~50% raw SSD IOPS

Our solution: LSM-trie

ÅBuild an ultra-large KV store for small data.

ïUsing a trie structure to improve compaction

efficiency.

ïClustering Bloom filters for efficiently reading out-

of-core metadata.

8

Organizing Tables in a Trie (Prefix Tree)

ÅKV items are located in the trie according to their hashed key.

ÅEach trie node contains a pile of immutable tables.

ÅThe nodes at the same depth form a conceptual level.

ÅHow does LSM-trie help with efficient compaction?

00 01 10 11

00 01 10 11

00 01 10 11

Level 0

Level 1

9

Hash prefix: 00 10 11

For one compaction:

Å Read 8 tables (1:8 fan-out)

Å Write 8 tables

Å Add 8 tables to the lower level

Only 5x WA for a 5-level LSM-trie

Efficient Compaction in LSM-trie

Compaction steps:

1. Read tables from the parent node into memory.

2. Assign the items to new tables according to hash-prefixes.

3. Write new tables into its child nodes.

Memory

#00 #01 #10

Tables linearly

grow at each node
10

#11

Introducing HTable*

ÅHTable: Immutable hash-table of key-value items

ïEach bucket has 4KB space by default.

ÅSome buckets have overflowed items.

ïMigrating the overflowed items.

KV
KV
KV
KV

KV
KV
KV

KV
KV
KV
KV

KV
KV
KV

KV

Bucket ID: 0 to 3 0 1 2 3

11*Itôs not the HTable in HBase .

Selecting Items for Migration

ÅSorting items in a bucket according to their keyôs hash.

ÅMigrating the items above the watermark (HashMark).

ÅRecording the HashMark and the corresponding IDs.

ï2B Source ID, 2B Target ID, 4B HashMark

0x33
0x56
0x6d
0x9a
0xa0
0xef

HashMark: 0xa0

0

Move to another bucket

12

Caching HashMarks for Efficient GETs

ÅOnly cache HashMark for most overloaded buckets.

ï1.01 amortized reads per GET.

ïA 1-TB store only needs ~400MB in-memory HashMark.

0x35
0x10
0xac

7

0x95

0x2a
0x33
0x60

1

0x86

Metadata in bucket 1

Bucket ID: 1

HashMark: 0x95

Target ID: 7
KV Item owned by Bucket 1

KV Item owned by Bucket 7

The only item that

triggers a 2nd read.

13

Most Metadata is in the Last Level

ÅThe first four levels contain 1.9 GB Bloom filters (BF).

ÅThe last level may contain over one hundred GB BFs.

ÅWe explicitly cache the BFs for Level 0 to Level 3.

ÅThe BFs at the last level are managed differently.

256 MB

2 GB

16 GB

128 GB

N TB

147 GB data

14

Data size distribution

across the levels:

Clustering Bloom Filter for Efficient Read

ÅEach hash(key) indicates a column of 4-KB buckets.

ÅWe collect all the BFs in a column to form a BloomCluster.

ÅEach GET requires one SSD read for all the out-of-core BFs.

15

Exploiting Full SSD Performance

ÅUsing an additional small SSD to host BloomClusters.

ïe.g., a 10-TB SSD for data + a 128-GB SSD for metadata.

ÅPlenty of memory space is left for your data cache!

Bloom-Cluster KV items

2nd Read1st Read

In-memory

Metadata
GET

50K QPS

52K

IOPS

16

A few GBs

Performance Evaluation of PUT

Consistent

Throughput (TP)

on HDD:

2x-3x higher

than the others

Expected high

TP on SSD

TP dropped due to static

wear-leveling in SSD

High TP lasts

longer on two SSDs

17

Write Amplification Comparison

Consistent 5x WA ratio

18

