
LSM-trie: An LSM-tree-based Ultra-Large

Key-Value Store for Small Data

Xingbo Wu

Yuehai Xu

Song Jiang

Zili Shao

The Hong Kong

Polytechnic University

The Challenge on Today’s Key-Value Store

• Trends on workloads

– Larger single-store capacity

• Multi-TB SSD

• Flash array of over 100 TB

– Smaller key-value items

• In a Facebook KV pool 99% of the items are ≤ 68B.

• Large metadata set on a single node

1

Consequences of a Large Metadata Set

• Less caching space for hot KV items.

– Low hit ratio compromises system throughput.

• Long warm-up time.

– It may take tens of minutes to read all metadata into memory.

• High read cost for out-of-core metadata.

– It’s expensive to read multiple pages to serve a single GET.

• LevelDB has managed to reduce the metadata size.

2

LevelDB Reduces Metadata Size with SSTable

• To construct an SSTable:

– Sort data into a list.

– Build memory-efficient block-index.

– Generate Bloom filters to avoid unnecessary reads.

• How to support insertions on SSTable?

3

[1,2,3,5,8,9] [10,11,13,15,16,18] [19,20,23,24,25]

1 10 19

4KB 4KB 4KB

Bloom filter

Get 20 Get 22

MemTable

Reorganizing Data Across Levels

• LSM-tree (Log-Structured Merge-tree)

– New items are first accumulated in MemTable.

– Each filled MemTable is converted to an SSTable at Level 0.

– LevelDB conducts compaction to merge the SSTables.

• A store can exponentially grow to several TBs with a

few levels.

1-13 14-26 27-37 38-49 50-62 63-74 75-86 87-99

1-25 26-50 51-77 78-99

1-99

Level 0

Level 1
Compaction

4

Very Expensive!

In one compaction (1:10 size ratio):

• Read 11 tables

• Write 11 tables

• Add only 1 table to the lower level

45x WA for a 5-level store

(WA: write amplification)

A Closer Look at Compaction

Steps in compaction:

1. Read overlapping SSTables into memory.

2. Merge-Sort the data in memory to form a list of new SSTables.

3. Write the new SSTables onto the disk to replace the old ones.

76-79 80-8470-75 85-90

Memory

Disk

70-77 78-84 85-90

70-90

5

Level N+1

Level N

Compaction can be very Expensive

• The workload:

– PUT 2 billion items of random keys (~250GB).

– 16-byte key and 100-byte value.

• PUT throughput reduces to 18K QPS (2MB/s).

6

Metadata I/O is Inefficient

• Facts about LevelDB’s metadata:

• Block Index: ~12 bytes per block.

• Bloom filter: ~10 bits per key.

• How large is it in a 10-TB store of 100-byte KV items?

– 155GB metadata: 30 GB block index + 125 GB Bloom filter.

7

~10% raw SSD IOPS

4-GB memory holds 25% of the

metadata for a 1-TB store.

~50% raw SSD IOPS

Our solution: LSM-trie

• Build an ultra-large KV store for small data.

– Using a trie structure to improve compaction

efficiency.

– Clustering Bloom filters for efficiently reading out-

of-core metadata.

8

Organizing Tables in a Trie (Prefix Tree)

• KV items are located in the trie according to their hashed key.

• Each trie node contains a pile of immutable tables.

• The nodes at the same depth form a conceptual level.

• How does LSM-trie help with efficient compaction?

00 01 10 11

00 01 10 11

00 01 10 11

Level 0

Level 1

9

Hash prefix: 00 10 11

For one compaction:

• Read 8 tables (1:8 fan-out)

• Write 8 tables

• Add 8 tables to the lower level

Only 5x WA for a 5-level LSM-trie

Efficient Compaction in LSM-trie

Compaction steps:

1. Read tables from the parent node into memory.

2. Assign the items to new tables according to hash-prefixes.

3. Write new tables into its child nodes.

Memory

#00 #01 #10

Tables linearly

grow at each node
10

#11

Introducing HTable*

• HTable: Immutable hash-table of key-value items

– Each bucket has 4KB space by default.

• Some buckets have overflowed items.

– Migrating the overflowed items.

KV
KV
KV
KV

KV
KV
KV

KV
KV
KV
KV

KV
KV
KV

KV

Bucket ID: 0 to 3 0 1 2 3

11*It’s not the HTable in HBase.

Selecting Items for Migration

• Sorting items in a bucket according to their key’s hash.

• Migrating the items above the watermark (HashMark).

• Recording the HashMark and the corresponding IDs.

– 2B Source ID, 2B Target ID, 4B HashMark

0x33
0x56
0x6d
0x9a
0xa0
0xef

HashMark: 0xa0

0

Move to another bucket

12

Caching HashMarks for Efficient GETs

• Only cache HashMark for most overloaded buckets.

– 1.01 amortized reads per GET.

– A 1-TB store only needs ~400MB in-memory HashMark.

0x35
0x10
0xac

7

0x95

0x2a
0x33
0x60

1

0x86

Metadata in bucket 1

Bucket ID: 1

HashMark: 0x95

Target ID: 7
KV Item owned by Bucket 1

KV Item owned by Bucket 7

The only item that

triggers a 2nd read.

13

Most Metadata is in the Last Level

• The first four levels contain 1.9 GB Bloom filters (BF).

• The last level may contain over one hundred GB BFs.

• We explicitly cache the BFs for Level 0 to Level 3.

• The BFs at the last level are managed differently.

256 MB

2 GB

16 GB

128 GB

N TB

147 GB data

14

Data size distribution

across the levels:

Clustering Bloom Filter for Efficient Read

• Each hash(key) indicates a column of 4-KB buckets.

• We collect all the BFs in a column to form a BloomCluster.

• Each GET requires one SSD read for all the out-of-core BFs.

15

Exploiting Full SSD Performance

• Using an additional small SSD to host BloomClusters.

– e.g., a 10-TB SSD for data + a 128-GB SSD for metadata.

• Plenty of memory space is left for your data cache!

Bloom-Cluster KV items

2nd Read1st Read

In-memory

Metadata
GET

50K QPS

52K

IOPS

16

A few GBs

Performance Evaluation of PUT

Consistent

Throughput (TP)

on HDD:

2x-3x higher

than the others

Expected high

TP on SSD

TP dropped due to static

wear-leveling in SSD

High TP lasts

longer on two SSDs

17

Write Amplification Comparison

Consistent 5x WA ratio

18

Read Performance with 4GB Memory

~50% raw

SSD IOPS

Only one SSD is used.

19

SSD IOPS

*No data cache for LSM-trie

Read Performance with 4GB Memory

Gains 96% raw

SSD IOPS with

an additional

SSD.

20
*No data cache for LSM-trie

Summary

• LSM-trie is designed to manage a large set of small data.

• It reduces the write-amplification by an order of magnitude.

• It delivers high throughput even with out-of-core metadata.

The LSM-trie source code can be downloaded at:

https://github.com/wuxb45/lsm-trie-release

21

Thank you!

Q & A

22

