LSM-trie: An LSM-tree-based Ultra-Large
Key-Value Store for Small Data

Xingbo Wu
Yuehai Xu Zili Shao
Song Jiang

() WAYNESTATE 4R e Hong kong
¢ 25 ; UNI\/ERS] Y Q Polytechnic University

The Challenge on To d a y 6 9/alue Stgre

ATrends on workloads

I Larger single-store capacity
AMulti-TB SSD
AFlash array of over 100 TB

I Smaller key-value items

Aln a Facebook KV pool99% of the items are

AlLarge metadata set on a single node

Consequences of a Large Metadata Set

A Less caching space for hot KV items.

I Low hit ratio compromises system throughput.

A Long warm-up time.

I It may take tens of minutes to read all metadata into memory.

A High read cost for out-of-core metadata.

iltos expensive to read multiple

A LevelDB has managed to reduce the metadata size.

L evelDB Reduces Metadata Size with SSTable

A To construct an SSTable:
T Sort data into a list.
I Build memory-efficient block-index.

I Generate Bloom filters to avoid unnecessary reads.

A How to support insertions on SSTable?

[GeE 20][GeE 22 |

"1 120 1119 T

| B:Ioom filter

l[1,2,3,5,8,9'] l[10,11,13,15,16,181 ﬂ19,2(§,23,24,25]'

|
4KB 4KB 4KB

Reorganizing Data Across Levels

A LSM-tree (Log-Structured Merge-tree)

I New items are first accumulated in MemTable.
I Each filled MemTable is converted to an SSTable at Level 0.

i LevelDB conducts compaction to merge the SSTables.

A A store can exponentially grow to several TBs with a

fewlevels. | veNlde
Level0 »

“Tevell > (k2 126%0) (Sis \zese)
143 1426 27-37 3849 50-62 6374 7586 8799

[Very Expensive!

Compaction

A Closer Look at Compaction

Steps in compaction:

1. Read overlapping SSTables into memory.

2. Merge-Sort the data in memory to form a list of new SSTables.
3. Write the new SSTables onto the disk to replace the old ones.

In one compaction (1:10 size ratio): [Memory }
A Read 11 tables
A Write 11 tables wililoy wielRe wiliide uitidle

A Add only 1 table to the lower level

45x WA for a 5-level store
(WA: write amplification)

e e [
SR X N
aval N s i i i 70770 785844 853500 i

Disk |

Level N

Compaction can be very Expensive

A The workload:
I PUT 2 billion items of random keys (~250GB).
I 16-byte key and 100-byte value.

A PUT throughput reduces to 18K QPS (2MB/s).

LevelDB's SET Throughput on 55D

80

(o)} ~
o o
[I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l

)]
o
T

o

N w e
(=] o

o
(=]
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Throughput (X1000 QPS)

oo

.0 0.5 1.0 1.5 2.0

Store. Size (Biliion K-V ifems)

Metadata I/O iIs Inefficient

AFacts about Level DB6s met ad
A Block Index: ~12 bytes per block.
A Bloom filter: ~10 bits per key.

A How large is it in a 10-TB store of 100-byte KV items?
I 155GB metadata: 30 GB block index + 125 GB Bloom filter.

LevelDB's GET Throughput

(@]

............................... -~ SSD4KB-pageRead |l 4 5B memory holds 25% of the
—e— LevelDB GET

N 0
o

(=)

metadata for a 1-TB store.

U
o
T

w B
o o
T

N
o
T

Throughput (X1000 queries per second)

=
o o
I

~—1 ~10% raw SSD IOPS

100 200 300 400 500 600 700 800 900
Store Size (GB)

Our solution: LSM-trie

ABuild an ultra-large KV store for small data.
I Using a trie structure to improve compaction
efficiency.
I Clustering Bloom filters for efficiently reading out-

of-core metadata.

Organizing Tables in a Trie (Prefix Tree)

A KV items are located in the trie according to their hashed key.
A Each trie node contains a pile of immutable tables.

A The nodes at the same depth form a conceptual level.

A How does LSM-trie help with efficient compaction?

} Level O
} Level 1

Hash prefix: 00 10 11 ====-

Efficient Compaction in LSM-trie

Compaction steps:
1. Read tables from the parent node into memory.
2. Assign the items to new tables according to hash-prefixes.

3. Write new tables into its child nodes.

Memory)
For one compaction:
A Read 8 tables (1:8 fan-out) . #00 #01 #10 = #11 |
A Write 8 tables _)
A Add 8 tables to the lower level —
_—
Only 5x WA for a 5-level LSM-trie [=]
.—‘,’/"s‘;\
- ’ N\ S
-=" 7 2N TN~

- A S ~
Tables linearly
grow at each node S | | | | — | | —
) (| () | —

Introducing HTable*

A HTable: Immutable hash-table of key-value items

I Each bucket has 4KB space by default.

A Some buckets have overflowed items.

I Migrating the overflowed items.

KV |
TR =
KV | KV | KV E KV
KV | KV |C KV E KV
KV [l KV L KV |l KV

Bucket ID: 0 to 3 T S

*| t fotshe HTable in HBase .

1
1

Selecting Iltems for Migration

ASorting items in a bucket
A Migrating the items above the watermark (HashMark).
A Recording the HashMark and the corresponding IDs.

I 2B Source ID, 2B Target ID, 4B HashMark

HashMark: Oxa0 o

Move to another bucket

a

Caching HashMarks for Efficient GETs

A Only cache HashMark for most overloaded buckets.

I 1.01 amortized reads per GET.

I A 1-TB store only needs ~400MB in-memory HashMark.

P

— e

0x60 | _Oxac \\\\\\\;i,_;
0x33 0x10
Ox2a 0x35

KV || Item owned by Bucket 1
. KV || Item owned by Bucket 7

o
<
0o
m]
 J
..
y
o
<
K

The only item that

riggers a 2" read.

/Metadata in bucket 1

Bucket ID: 1
HashMark: 0x95
\ _Target ID: 7

~

Most Metadata Is in the Last Level

A The first four levels contain 1.9 GB Bloom filters (BF).

A The last level may contain over one hundred GB BFs.
AWe explicitly cache the BFs for Level 0 to Level 3.

AThe BFs at the last level are managed differently.

256 MB
2 GB

Data size distribution
across the levels:

- 147 GB data

Clustering Bloom Filter for Efficient Read

A Each hash(key) indicates a column of 4-KB buckets.
A We collect all the BFs in a column to form a BloomCluster.

A Each GET requires one SSD read for all the out-of-core BFs.

msmm HTable

Hash(key) = 3 B 4-KB Bucket
1 Bloom-filter

‘IIII -
a]

/ Clusters of Bloom-Filters
0] LI T eeeeeseereeees I

Exploiting Full SSD Performance

A Using an additional small SSD to host BloomClusters.

I e.g.,a10-TB SSD for data + a 128-GB SSD for metadata.

A Plenty of memory space is left for your data cache!

A few GBs

= N
Metadata 1st Read 2nd Read

50K OPS a4 Q

Bloom-Cluster

KV items

52K
IOPS

Performance Evaluation of PUT

Expected h|gh —e— |SM-trie-2-zipf
TPoNSSD | —— LSM-tr!e-ZSSD |
—V¥— LSM-trie-1SSD
6 —4%— | SM-trie-HDD |
O~ RocksDB
LevelDB-zipf
51

N
|

w
T

N

Throughput (X100k queries per s

,{
.

o

e (Billions of KV items)

TP dropped due to static
wear-leveling in SSD

Consistent
Throughput (TP)
on HDD:
2X-3X higher
than the others

Write Amplification Comparison

Consistent 5x WA ratio

