Lamassu: Storage-Efficient Host-Side Encryption

Peter Shah, Won So
Advanced Technology Group
9 July, 2015
Agenda

1) Overview
2) Security
3) Solution Architecture
4) Experimental Results
5) Conclusion
Overview
Architectural Goals

1) Enable external / untrusted storage
 - Public Clouds, etc.
Overview
Architectural Goals

1) Enable external / untrusted storage
 - Public Clouds, etc.

2) Provide data security
 - Restrict trust domain
Overview

Architectural Goals

1) Enable external / untrusted storage
 - Public Clouds, etc.

2) Provide data security
 - Restrict trust domain
Overview

Architectural Goals

1) Enable external / untrusted storage
 - Public Clouds, etc.

2) Provide data security
 - Restrict trust domain

3) Preserve storage deduplication
 - Use convergent encryption
 - Focus on block-oriented deduplication
Overview
Architectural Goals

1) Enable external / untrusted storage
 - Public Clouds, etc.

2) Provide data security
 - Restrict trust domain

3) Preserve storage deduplication
 - Use convergent encryption
 - Focus on block-oriented deduplication

4) Work with existing applications
 - Transparent addition
 - No changes to app or storage systems
 - Self-contained*
Security

Encryption Model
Convergent Encryption (CE)

Equality-Preserving Encryption

- For any given plain text, convergent encryption will always produce the same cipher text.
Convergent Encryption
Message-Locked Encryption (MLE)

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked encryption path
Convergent Encryption
Message-Locked Encryption (MLE)

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked decryption path
Convergent Encryption
Message-Locked Encryption (MLE)

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked decryption path
Convergent Encryption

Key Storage

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data
Convergent Encryption

Key Storage

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data
Metadata Storage

Key Storage Architecture
Keys as Metadata
Transparent Key Management

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file
Keys as Metadata
Transparent Key Management

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file

- Store keys inside each file
 - Preserve transparency
 - Allow external storage to copy, rename, etc.
Keys as Metadata

Transparent Key Management

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file

- Store keys inside each file
 - Preserve transparency
 - Allow external storage to copy, rename, etc.

- Separate data from metadata
 - Keep keys from polluting duplicate blocks
 - Keep added data from breaking block alignment
Keys as Metadata
Transparent Key Management

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file

- Store keys inside each file
 - Preserve transparency
 - Allow external storage to copy, rename, etc.

- Separate data from metadata
 - Keep keys from polluting duplicate blocks
 - Keep added data from breaking block alignment

![Diagram showing file data and stored keys](image)
File Structure
Logical File Layout

Segment 0 | Segment 1 | Segment 2 | ... | Segment n

Fixed-Size Segment
Logical File Layout

Segment 0	Segment 1	Segment 2	...	Segment n

Physical Offset 0

Metadata	Data 0	Data 1	Data 2	...	Data m

Logical Offset 0

Fixed-Size Segment

Fixed-Size Data Block

© 2015 NetApp, Inc. All rights reserved.
File Structure

Logical File Layout

Segment 0 Segment 1 Segment 2 \cdots Segment n

Physical Offset 0

Metadata Data 0 Data 1 Data 2 \cdots Data m

Fixed-Size Segment

Logical Offset 0

Meta Slot 0 Slot 1 Slot 2 \cdots Slot m

Fixed-Size Data Block

Key Table Slot
Metadata Consistency
Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes
Metadata Consistency
Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Starting State

```
N
...
Block N
...
```
Metadata Consistency

Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Starting State

Update Block

© 2015 NetApp, Inc. All rights reserved.
Metadata Consistency
Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Starting State

Update Block

Write Meta
Metadata Consistency
Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Starting State

Update Block

Write Meta

Write Data
Metadata Consistency
Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Starting State

Update Block

Write Meta

Write Data

- Stale keys are cleaned up during subsequent metadata updates
Results

Storage Efficiency & Performance
Overview
Prototype Implementation

Application

Lamassu

FUSE

Key Manager

VFS

Linux Kernel

NFS

Network

Remote Storage System
Comparison with other Systems

Benchmarking Strategy

1) PlainFS
 - FUSE-based (pass-through)
Comparison with other Systems

Benchmarking Strategy

1) PlainFS
 - FUSE-based (pass-through)

2) EncFS
 - FUSE-based
 - Provides AES encryption
Comparison with other Systems

Benchmarking Strategy

1) PlainFS
 - FUSE-based (pass-through)

2) EncFS
 - FUSE-based
 - Provides AES encryption

3) LamassuFS
 - FUSE-based
 - Provides AES encryption
 - Provides convergent encryption
Deduplication Results

Comparison of Deduplication Ratios

Relative data size after deduplication (%)

Percentage of redundancy in raw data

PlainFS
EncFS
LamassuFS

© 2015 NetApp, Inc. All rights reserved.
Deduplication Results
Comparison of Deduplication Ratios

- **Relative data size after deduplication (%)**
- **Percentage of redundancy in raw data**

- **PlainFS**
- **EncFS**
- **LamassuFS**
Comparison with other FUSE systems using remote NFS storage

Single File I/O Throughput

<table>
<thead>
<tr>
<th></th>
<th>PlainFS</th>
<th>EncFS</th>
<th>LamassuFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq-write</td>
<td>140</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>seq-read</td>
<td>130</td>
<td>110</td>
<td>90</td>
</tr>
<tr>
<td>rand-write</td>
<td>150</td>
<td>140</td>
<td>130</td>
</tr>
<tr>
<td>rand-read</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>rand-rw</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Single File I/O Throughput
Comparison with other FUSE systems using local DRAM storage

I/O Bandwidth

seq-write seq-read rand-write rand-read rand-rw

PlainFS EncFS LamassuFS

10 100 1000

© 2015 NetApp, Inc. All rights reserved.
Conclusions
Recap and Observations

- Strong security on shared storage
 - Uses standard encryption techniques

- Preserves storage-based deduplication

- Transparent to both application and storage
 - Easy to deploy

- Flexible user-mode architecture
 - Can integrate with other host-side technologies
Conclusions
Recap and Observations

- Strong security on shared storage
 - Uses standard encryption techniques

- Preserves storage-based deduplication

- Transparent to both application and storage
 - Easy to deploy

- Flexible user-mode architecture
 - Can integrate with other host-side technologies

Questions?

Special Thanks
James Kelley
Thank You