Latency-Tolerant Software Distributed Shared Memory

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin

University of Washington
USENIX ATC 2015
July 9, 2015
25 years ago...

Memory Coherence in Shared Virtual Memory Systems

KAI LI
Princeton University
and
PAUL HUDAK
Yale University

TreadMarks: Shared Memory Computing on Networks of Workstations

Cristiana Anzar, Alan E. Cox, Sandhya Dwarkadas, Peter Krieheb, Honghai Lu, Ramakrishnan Rajamony, Waimin Yu, and Willy Zwaanweel
Rice University

High-speed networks and improved microprocessor performance are making networks of workstations an appealing vehicle for parallel computing. By relying solely on commodity hardware and software, networked workstations can offer parallel processing at a relatively low cost. A network of workstations can be realized as a processor farm in which dedicated processors provide computing cycles, or it can consist of a dynamically varying set of machines that perform long-running computations during idle periods. In the latter case, the hardware cost is essentially zero, since many organizations already have extensive workstation networks.

In terms of performance, networked workstations approach or exceed supercomputer performance for some applications. These loosely coupled multiprocessors will be to remain replicas of the more tightly coupled designs, which, because of lower latencies and higher bandwidths, are more efficient for applications with stringent synchronization and communication requirements. However, advances in networking technology and processor performance are expanding the class of applications that can be executed efficiently on networked workstations.

Shared memory facilitates the transition from sequential...
Distributed shared memory, then...

Use DRAM as cache

Make transparent/fast with paging hardware (cache block = memory page)

Cache coherence protocol over network

Best apps were: compute-focused dense coarse-grained
Distributed shared memory, now?

- New “data-intensive” applications:
 - Social network analysis
 - Machine learning
 - Bioinformatics
 ...

- Data access, not compute, is the hard part

- Locality can be hard to find

- A bad fit for DSM of 25 years ago, so community has explored other abstractions:
 - Spark, GraphLab, Naiad, etc.

\[\text{S.cerevisiae} \quad \text{[von Mering et al.]} \]
Grappa: Software distributed shared memory for data-intensive apps

Your next data-intensive application or framework!

MapReduce, GraphLab, Relational Query Engine, Irregular apps, native code, etc...

Grappa – Distributed shared memory

Linux x86 node, Commodity network, Linux x86 node
What makes this hard?

Parallelism is abundant in data-intensive applications!

- Lack of locality
- Small messages
- Small tasks
What makes this hard?

- Lack of locality
- Small messages
- Small tasks

Use parallelism to hide latency!
A remote read with latency tolerance

Task 1

read()
A remote read with latency tolerance

Task 1
Task 2
Task ~100
A remote read with latency tolerance
What makes this hard?

- Lack of locality
- Small messages
- Small tasks

Use parallelism to hide latency!
The small message problem

![Graph showing bandwidth (GB) vs. message size (B, kB, 64 kB) for MPI and RDMA (verbs).]
The small message problem
The small message problem

![Graph showing bandwidth vs. message size](image-url)
Our goal is throughput!
We can trade additional latency for increased throughput.
Aggregating remote operations
Aggregating remote operations

Task 1

Task 2

Task ~1000

read()

op()
Aggregating remote operations

Task 1
read()

op()
op()

Task 2
read()

op()
op()

Task ~1000

DRAM

DRAM

DRAM

DRAM
What makes this hard?

- Lack of locality
- Small messages
- Small tasks

Use parallelism to hide latency!

Trade latency for more throughput!
What makes this hard?

Lack of locality

Use parallelism to hide latency!

Small messages

Trade latency for more throughput!

Small tasks

Make context switching fast.
User-level cooperative multithreading

• With ~1000 threads per core, contexts often don’t fit in L1
 Our scheduler prefetches contexts into cache
 Limited by DRAM bandwidth, not miss latency

• Context switch moves 1 cacheline of thread state, 3 cachelines of working set

• ~50 ns
DSM implementation
Grappa Code: Expose DSM abstraction at language level using C++11 library

Searching a large, unbalanced tree

Standard single-core version

```cpp
void search(Vertex * vertex_addr) {
    Vertex v = *vertex_addr;
    Vertex * child0 = v.children;
    for (int i = 0; i < v.num_children; ++i) {
        search(child0+i);
    }
}
```

Grappa multi-node version

```cpp
void search(GlobalAddress<Vertex> vertex_addr) {
    Vertex v = delegate::read(vertex_addr);
    GlobalAddress<Vertex> child0 = v.children;
    forall( 0, v.num_children, [child0](int64_t i) {
        search(child0+i);
    }
```
Accessing data in the global address space

Memory is partitioned by core
All sharing is done using communication, so synchronization == scheduling
Accessing memory through delegates
Accessing memory through delegates

Move computation to data:
All accesses to a word run on its home core
Results
Delegation + aggregation makes random access fast

GUPS pseudocode:

```c
int a[BIG];
int b[n] = {rand()};
for (i=0; i<n; i++)
a[b[i]]++;
```

32-core AMD Interlagos nodes,
Mellanox ConnectX-2
40 Gb InfiniBand
Building application frameworks on Grappa

In-memory MapReduce

GraphLab API

Relational query execution engine
In-memory MapReduce

• Simple implementation of MapReduce model for iterative applications (no fault-tolerance)

• Compared with Spark, with fault-tolerance disabled

• Benchmark: K-Means on SeaFlow ocean cytometry dataset (8.9GB)

• 64 AMD Interlagos nodes, Mellanox 40Gb ConnectX-2 InfiniBand
Relational query execution

• Built a backend for the Raco relational algebra compiler/optimizer: github.com/uwescience/raco

 • Queries are compiled into Grappa for() loops

• Compare with Shark, a Hive/SQL-like query system built on Spark using SP2Bench benchmark
GraphLab on Grappa

- Subset of the GraphLab API described in PowerGraph paper

- GraphLab: replicated graph representation, complex partitioning strategy;
 Grappa: simple adjacency list, random partitioning

- Four benchmarks from GraphBench.org:
 PageRank, conn. components, SSSP, BFS

- Graphs: Friendster (65M vertices, 1.8B edges),
 Twitter (41M vertices, 1B edges)
Why is Grappa fast?

• Much higher message rates

• Built to enable use of RDMA (but is still fast over TCP)

• Faster serialization

• Efficient fine-grained synchronization and scheduling
Not in the talk

• Also in paper:
 Deeper dive on performance
 Results from programming against Grappa directly

• Related projects:

 Alembic: Automatic Locality Extraction via Migration.
 B. Holt, P. Briggs, L. Ceze, M. Oskin
 OOPSLA 2014

 Radish: Compiling Efficient Query Plans for Distributed Shared Memory.
 B. Myers, D. Halperin, J. Nelson, M. Oskin, L. Ceze, B. Howe
 Tech report, October 2014

 Flat Combining Synchronized Global Data Structures.
 International Conference on PGAS Programming Models (PGAS), October 2013
Conclusion

• Grappa is a platform for building new data-intensive analytics frameworks

• **Latency tolerance** enables fast distributed shared memory for analytics

• BSD-licensed source, more info:

http://grappa.io