Application-Detined Decentralized
Access Control

Yuanzhong Xu, Alan Dunn, Owen Hofmann*,
Michael Lee, Syed Akbar Mehdi, Emmett Witchel

UT-Austin, Google*

Access control mechanism

e Simplicity * Flexiblility
* Easy to understand EXpressive

* |Less prone to bugs e Support many use cases

UNIX/Linux - simplicity
e Linux/UNIX
e User: UID
. Group: GID

e Admin: root user

o Simplicity

 Easy to understand

* |Less prone to bugs

UNIX/Linux - more flexibility

e Linux/UNIX
* User: UID . Need more flexibility
+ Group: GID e setuid binary

| e effective UID
e Admin: root user

| o « FS UID
o Simplicity
e sticky bit

 Easy to understand

* |Less prone to bugs

setuld binaries make things tricky
T —

APRPACHE

sUuEXEC of Apache server: -
using setuid binaries to run * Need more flexibility

CGI/SSI with different UIDs » setuid binary

“If you aren't familiar with
managing setuid root
programs and the security
Issues they present, we
highly recommend that you
not consider using
SUEXEC.”

— http://httpd.apache.org/docs/2.2/suexec.html

http://httpd.apache.org/docs/2.2/suexec.html

Access control In server applications

* A server application typically uses its own, hand-
crafted program logic to enforce access control

Access control is hard to get right...

Source of bugs: among OWASP top 10 application security risks

https://www.owasp.org/index.php/Top_10_2010-Main

Server application

0S Why OS access control
CANNOT help?

Nnflexible OS-level access control

 Numerical identifiers for @ Consequences

principals in a flat namespace |
* different servers/apps CANNOT

« 32-bit integer UID, GID manage principals separately
(Linux) e requires mapping between
server users and OS UIDs

o centralized management of

orincipals * regular user CANNQOT define an
ad hoc group (like a circle in
« root/administrator privilege Google+)
required to manage users/ * creating a server user requires
groups modifying system-wide sensitive
files

 /etc/passwd, /etc/group

OS mechanism: inflexible, but robust

Used beyond basic access control of OS users

* Privilege separation in SSHD
- different components have ditferent UIDs J

* Android
- each application has a unigue UID

CNDO=0ID

« Mac OS X Seatbelt application sandbox cx

8

User/Application-defined access control

* Privilege separation
* Application sandbox
* Access control in server applications

* Flexible group sharing

A unified OS-level mechanism to support all those
scenarios”

- a balance between Simplicity and Flexibility

DCAC

e DeCentralized Access Control

» Conceptually similar to traditional UNIX
discretionary access control (DAC)

* But generalized, more flexible

* A unified model: familiar, intuitive
- can naturally represent users/groups

e Coexists with DAC

10

DCAC mechanisms summary

Augment Restrict

privilege/access privilege/access

DCAC basic Add child attribute

attribute-based Drop attribute
model

Attribute gateway

Grant access when
EITHER DCAC OR pmask, UID-bit
DAC passes

Mechanisms for
coexisting with DAC

11

DCAC Attributes - principal identifiers

Attributes — hierarchically named strings

- components separated by “.

. g
u.alice .g.Student

.u.alice.photo

s the parent attribute of

A parent attribute represents a superset of
privileges of its child attributes

12

DCAC Attributes - principal identifiers

* Attribute Is a generic abstraction — can represent
different types of principals

*OS users/groups
*Server users/groups
* Applications

* Application components
*Naming conventions for OS users and groups:

eUser .u.<username>

*group .g.<groupname>

13

DCAC processes vs Linux processes

DCAC Process Linux Process

Attribute set UID: 1000

Inherited

across fork() GIDs: 4,
and exec()
20,

u.alice

.u.alice.photos

.g.Students

14

DCAC obijects vs Linux objects

DCAC File/IPC object Linux File/IPC object
ACL: 4 access modes permission bits
—IrwWXr—=Xr—X
read = .g.students
. Each access
V .u.alice.photos S N
UlID: 1000

of attributes in

write = .u.alice.photos (owner: alice)

disjunctive normal

form (DNF), w/o
execute = () ne(gatioiws GID: 100

(group: student)

modify = .u.alice

15

DCAC ACL access modes

permission to read/
write/execute

Admin privilege —
&,change access

read, write, execute
access modes

traditional DAC
(discretionary

access control)

rwx permission bits
—Ir'wWXr—=Xr—X

modify access mode

A matching process can

change ACL of the file

UID (owner)

A process with the same
UID can chmoa

16

Any process can change its attribute set

* Deprivilege a process without root:
u.alice
* A process can add a child attribute | add child
of any existing attribute in its .
attribute set ke

.u.alice.photo

* A process can always drop any

drop parent
attribute l

.u.alice.photo

 Decentralized in privilege,compared to
Linux: setuid() syscall restricted to root

17

Example: sandbox a PDF viewer

PDF
read = .u.alice.pdf

Alice’s shell process
V

podf viewer

fork >

|

fork add drop exec
e

18

Example: support server-defined users

Alice Bob

O ™
2 requests from ﬁ ﬁ

U

dispatcher process

.apps.server

fork

worker process for Bob

o
-

—

worker process for Alice

8 i |

—

19

process

request
for Bob

Process
request
for Alice

Augmenting a process’ privilege

LINuX:

setuld binaries:
* €.9g.sudo

sudo allows a
user’s process to
become root, It the
user Is in group
‘admin”

DCAC:

Attribute gateways:

e ©.9., represent an aad
hoc group:

the gateway allows a
group member’s
process to add the
group attribute

20

Ad hoc group

Ad hoc group:
» created/managed by
regular users
 \WWho are members of
the group?
 Who are admins of
the group?

21

Group:
“reading-group” defined by Alice

members

& °

admins

[3R

1AJ B

Ad hoc group as gateway

/ Gateway — ACL for

attribute
.u.alice.reading-group

ACL

read = .u.chris VI .u.david

~

modify = .u.alice V. .u.bob

gateway: a

special file

22

Group:
“reading-group” defined by Alice

members

& °

admins

[3R

1AB B}

Ad hoc group as gateway

child attribute

/ Gateway — ACL for of .u.alice: Group:
attribute under control | “reading-group” defined by Alice

.u.alice.reading-group of Alice

ACL

read = .u.chris \I .u.david ‘ &
D

modify = .u.alice V. .u.bob
\\ // I%l Ig

members

admins

gateway: a

special file

23

Ad hoc group as gateway

Group:

/ Gateway — ACL for
“reading-group” defined by Alice

attribute
.u.alice.reading-group

ACL

Regular members
as the read
access mode

members

& °

read = .u.chris VI .u.david

modify = .u.alice I .u.bob |
L 3
\\ // LAD 4 B;j

admins

gateway: a

special file

24

Ad hoc group as gateway

/ Gateway — ACL for \ / Group:

attribute “reading-group” defined by Alice

.u.alice.reading-group
ACL members
read = .u.chris \I .u.david ‘ 8
D

admins

modify = .u.alice V. .u.bob
\>

Admins as the 1AB §Bj /
modify access mode:

Admin Privilege
can modify this gateway, or
create new gateways
for .u.alice.reading-group

gateway: a

special file

Ad hoc groups In a server application

dispatcher process

fork

worker process for Bob

- ~
-

gateway

worker process for Alice

90

.apps.server.u.alice

=7 V¥, 73 LYy LN OT YV OHYE SN TR o 1‘\: = 9
R IR o7 P T ey

26

Decentralized attribute gateways

« DCAC doesn't enforce the location of gateways

e Specific OS distributions/applications should
develop conventions

27

Decentralized attribute gateways

e Ditferent applications manage their own gateways
separately

Application 1 Application 2 Application 3

28

Coexisting with DAC in Linux

DAC: traditional discretionary access control

DCAC Process Linux Process in DAC

Attribute set UID: 1000 (alice)

u.alice GIDs: 4, 20, ...

.u.alice.photos

.g.Students

29

Coexisting with DAC in Linux

DAC: traditional discretionary access control

How to restrict
DAC?

Isolate processes with
the same UID

DCAC Process

Attribute set

u.alice

.u.alice.photos

.2.Students

UID: 1000 (alice)
GIDs: 4, 20, ...

30

Grant access when
either DCAC or DAC
passes

— A valid Linux disk
Image Is a valid
DCAC disk image
(enables incremental
deployment)

More permissive
than DAC only

How to restrict DAC?

DAC: traditional discretionary access control

DCAC Process p mas k

Attribute set o | |
permission bits ANDed with pmask

u.alice

e.g. pmask=0555: DAC can't grant
.u.alice.photos write permission

.g.Students |
UID: 1000 (alice) / | U ‘ D'b|t
It UID-bit=0:
GIDs: 4, 20, ...

- give up the UID-based ambient authority
pmask = 0555

_—" e.g. DAC can't allow chmod
Jboriool —

!

A process can ONLY clear bits in pmask
and UID-bit

— to deprivilege itself

31

Bootstrap DCAC

e Attributes can only be added based on the current
attribute set

* \Who sets up the initial attribute”
e Allow a root process to add any attribute

 Modity login/sshd/lightDM to set up attribute set
Of a user’s process with:
- .u.<username>, With admin privilege
- .g.<groupname>, Without admin privilege

32

Represent ACLs on objects

ACLs for persistent files are stored in extended
attributes (xattr)

ACLs are also cached in memory
e support in-memory files, IPC objects
* Improve performance

e can be invalidated by NFS according to time
stamps, or hashes

33

Applications

A single model that supports these scenarios:

* A wrapper program that sets up a sandbox, for unmodified
applications.

e DokuWiki [246 lines code change]
- use DCAC to enforce access control
- support ad hoc groups

e NFS [326 lines code change]
- DCAC can operate on multiple machines
- No centralized attribute server

e SSHD [81 lines code change]
- Allow a regular OS user to define his/her sub-users, who
can log in with a subset of the OS user’s privilege.

34

Performance

* File system micro-benchmarks (Reimplemented Andrew
Benchmarks, small file):

DCAC only adds overhead on

open, create, delete, etc.

e ext4:
32B ACL: under49% slowdown
- INn-Inode xattr
256B ACL: under 9% slowdown
- extra disk block for xattr

« NFSV3: under 5% slowdown
ACL size has small impact on performance
Extra round-trips (for fetching ACLSs)
— but not often, cached for most of the time

35

Performance

e Macro-benchmarks

 Kernel compile: under 2% slowdown
- both ext4 and NFSv3

e DokuWikl: 0% slowdown

- playing back 6,430 revisions of /65 pages to
the DokuWiki website

36

Conclusion

DCAC generalizes OS access control to support user/
application-defined scenarios

DCAC avoids the requirement of root privilege in many
use cases

DCAC does not require centralized attribute management

DCAC coexists with DAC (discretionary access control)

Code available on GitHub:
https://github.com/ut-osa/dcac

37

https://github.com/ut-osa/dcac

