
Application-Defined Decentralized
Access Control

Yuanzhong Xu, Alan Dunn, Owen Hofmann*,  
Michael Lee, Syed Akbar Mehdi, Emmett Witchel

!
UT-Austin, Google*

Access control mechanism

2

• Simplicity • Flexibility

• Easy to understand

• Less prone to bugs

• Expressive

• Support many use cases

UNIX/Linux - simplicity

3

• Simplicity

• Easy to understand

• Less prone to bugs

• Linux/UNIX

• User: UID

• Group: GID

• Admin: root user

UNIX/Linux - more flexibility

4

• Simplicity

• Easy to understand

• Less prone to bugs

• Linux/UNIX

• User: UID

• Group: GID

• Admin: root user

• setuid binary

• effective UID

• FS UID

• sticky bit

• …

• Need more flexibility

setuid binaries make things tricky

5

suEXEC of Apache server:  
using setuid binaries to run
CGI/SSI with different UIDs

“If you aren't familiar with
managing setuid root
programs and the security
issues they present, we
highly recommend that you
not consider using
suEXEC.”

— http://httpd.apache.org/docs/2.2/suexec.html

• setuid binary

• effective UID

• FS UID

• sticky bit

• …

• Need more flexibility

http://httpd.apache.org/docs/2.2/suexec.html

Server application

Access control in server applications
• A server application typically uses its own, hand-

crafted program logic to enforce access control

OS

Access control

Access control is hard to get right…
!
Source of bugs: among OWASP top 10 application security risks !
https://www.owasp.org/index.php/Top_10_2010-Main

Why OS access control
CANNOT help?

Consequences
• different servers/apps CANNOT

manage principals separately
• requires mapping between

server users and OS UIDs

Inflexible OS-level access control
• Numerical identifiers for

principals in a flat namespace

• 32-bit integer UID, GID
(Linux)

7

• centralized management of
principals

• root/administrator privilege
required to manage users/
groups

• /etc/passwd, /etc/group

• regular user CANNOT define an
ad hoc group (like a circle in
Google+)

• creating a server user requires
modifying system-wide sensitive
files

OS mechanism: inflexible, but robust

Used beyond basic access control of OS users

• Privilege separation in SSHD  
- different components have different UIDs

• Android 
- each application has a unique UID

• Mac OS X Seatbelt application sandbox

8

• Privilege separation

• Application sandbox

• Access control in server applications

• Flexible group sharing

A unified OS-level mechanism to support all those
scenarios?

 - a balance between Simplicity and Flexibility

User/Application-defined access control

9

10

DCAC
• DeCentralized Access Control

• Conceptually similar to traditional UNIX
discretionary access control (DAC)

• But generalized, more flexible

• A unified model: familiar, intuitive 
- can naturally represent users/groups

• Coexists with DAC

11

DCAC mechanisms summary

Augment!
privilege/access

Restrict!
privilege/access

DCAC basic
attribute-based

model

Add child attribute
Drop attribute

Attribute gateway

Mechanisms for
coexisting with DAC

Grant access when
EITHER DCAC OR

DAC passes
pmask, UID-bit

12

DCAC Attributes - principal identifiers

• Attributes — hierarchically named strings  
- components separated by “.”  
 
 
 

• is the parent attribute of  
A parent attribute represents a superset of
privileges of its child attributes

.u.alice

.u.alice

.u .g

.u.bob .g.student

.u.alice.photo

.u.alice.photo

13

DCAC Attributes - principal identifiers

•Attribute is a generic abstraction — can represent
different types of principals

•OS users/groups
•Server users/groups
•Applications
•Application components

•Naming conventions for OS users and groups:
•user .u.<username>
•group .g.<groupname> 

14

DCAC processes vs Linux processes

DCAC Process

.u.alice

.u.alice.photos

.g.students

Attribute set

Linux Process

UID: 1000

GIDs: 4,  
 20, 
 …

Inherite
d

across
fork()
and

Inherited
across fork()
and exec()

15

DCAC objects vs Linux objects

Linux File/IPC object

permission bits

DCAC File/IPC object

ACL: 4 access modes

read = .g.students
V .u.alice.photos

write = .u.alice.photos

execute = Ø

modify = .u.alice

GID: 100
(group: student)

-rwxr-xr-x

UID: 1000
(owner: alice)

Each access
mode is a formula

of attributes in
disjunctive normal
form (DNF), w/o

negations

16

DCAC ACL access modes

DCAC
traditional DAC
(discretionary

access control)

permission to read/
write/execute

read, write, execute
access modes

rwx permission bits
 -rwxr-xr-x

Admin privilege —
change access modify access mode UID (owner)

A matching process can
change ACL of the file

A process with the same
UID can chmod

17

Any process can change its attribute set

• Deprivilege a process without root:

• A process can add a child attribute
of any existing attribute in its
attribute set

• A process can always drop any
attribute

• Decentralized in privilege,compared to  
Linux: setuid() syscall restricted to root

.u.alice

.u.alice

.u.alice.photo

add child

drop parent

.u.alice.photo

18

Example: sandbox a PDF viewer

Alice’s shell process

.u.alice

.u.alice
fork

fork

.u.alice.pdf

add drop exec

pdf viewer

read = .u.alice.pdf

19

Example: support server-defined users

dispatcher process

.apps.server

fork

worker process for Bob

worker process for Alice

.apps.server

.apps.server

process
request
for Bob

process
request
for Alice

.apps.server.u.bob

.apps.server.u.alice

2 requests from

BobAlice

20

Augmenting a process’ privilege

setuid binaries:
!
• e.g. sudo
!

sudo allows a
user’s process to
become root, if the
user is in group
“admin”

DCAC:Linux:

Attribute gateways:
!
• e.g., represent an ad

hoc group:
!

the gateway allows a
group member’s
process to add the
group attribute

21

Ad hoc group

Ad hoc group:
• created/managed by

regular users
• Who are members of

the group?
• Who are admins of

the group?

Group:
“reading-group” defined by Alice

members

admins

22

Ad hoc group as gateway

Group:
“reading-group” defined by Alice

members

admins

Gateway — ACL for
attribute

.u.alice.reading-group
ACL

read = .u.chris V .u.david

modify = .u.alice V .u.bob

gateway: a
special file

23

Ad hoc group as gateway

Group:
“reading-group” defined by Alice

members

admins

Gateway — ACL for
attribute

.u.alice.reading-group
ACL

read = .u.chris V .u.david

modify = .u.alice V .u.bob

child attribute
of .u.alice:

under control
of Alice

gateway: a
special file

24

Ad hoc group as gateway

Group:
“reading-group” defined by Alice

members

admins

Gateway — ACL for
attribute

.u.alice.reading-group
ACL

read = .u.chris V .u.david

modify = .u.alice V .u.bob

Regular members
as the read

access mode

gateway: a
special file

25

Ad hoc group as gateway

Group:
“reading-group” defined by Alice

members

admins

Gateway — ACL for
attribute

.u.alice.reading-group
ACL

read = .u.chris V .u.david

modify = .u.alice V .u.bob

Admins as the  
modify access mode:

!
Admin Privilege

can modify this gateway, or
create new gateways

for .u.alice.reading-group

gateway: a
special file

26

Ad hoc groups in a server application

dispatcher process

.apps.server
fork

worker process for Bob

worker process for Alice

.apps.server.u.bob

.apps.server.u.alice

.apps.server.u.bob.  
friends

gateway
.apps.server.u
.bob.friends

read=

27

Decentralized attribute gateways

• DCAC doesn’t enforce the location of gateways

• Specific OS distributions/applications should
develop conventions

28

Decentralized attribute gateways

• Different applications manage their own gateways
separately

28

Application 1 Application 2 Application 3

gateways gateways gateways

29

Coexisting with DAC in Linux
DCAC Process

.u.alice

.u.alice.photos

.g.students

Attribute set

Linux Process in DAC

GIDs: 4, 20, …

UID: 1000 (alice)

DAC: traditional discretionary access control

30

Coexisting with DAC in Linux
DCAC Process

.u.alice

.u.alice.photos

.g.students

Attribute set

GIDs: 4, 20, …

Grant access when
either DCAC or DAC

passes
!

— A valid Linux disk
image is a valid
DCAC disk image
(enables incremental
deployment)

More permissive
than DAC only

UID: 1000 (alice)

DAC: traditional discretionary access control

isolate processes with
the same UID

How to restrict
DAC?

How to restrict DAC?

DCAC Process

.u.alice

.u.alice.photos

.g.students

Attribute set

pmask = 0555

pmask

31

GIDs: 4, 20, …
UID: 1000 (alice)

permission bits ANDed with pmask

e.g. pmask=0555: DAC can’t grant
write permission

DAC: traditional discretionary access control

A process can ONLY clear bits in pmask
and UID-bit
 — to deprivilege itself

UID-bit = 0

UID-bit
If UID-bit=0:
 - give up the UID-based ambient authority
 e.g. DAC can’t allow chmod

Bootstrap DCAC

• Attributes can only be added based on the current
attribute set

• Who sets up the initial attribute?

• Allow a root process to add any attribute

• Modify login/sshd/lightDM to set up attribute set
of a user’s process with:  
- .u.<username>, with admin privilege 
- .g.<groupname>, without admin privilege

32

Represent ACLs on objects

• ACLs for persistent files are stored in extended
attributes (xattr)

• ACLs are also cached in memory

• support in-memory files, IPC objects

• improve performance

• can be invalidated by NFS according to time
stamps, or hashes

33

Applications
A single model that supports these scenarios:
• A wrapper program that sets up a sandbox, for unmodified

applications.

• DokuWiki [246 lines code change]  
- use DCAC to enforce access control 
- support ad hoc groups

• NFS [326 lines code change] 
- DCAC can operate on multiple machines 
- No centralized attribute server

• SSHD [81 lines code change] 
- Allow a regular OS user to define his/her sub-users, who
can log in with a subset of the OS user’s privilege.

34

Performance
• File system micro-benchmarks (Reimplemented Andrew

Benchmarks, small file): 

35

DCAC only adds overhead on
open, create, delete, etc.

• ext4: 
 32B ACL: under4% slowdown  
 - in-inode xattr  
 256B ACL: under 9% slowdown  
 - extra disk block for xattr

• NFSv3: under 5% slowdown 
 ACL size has small impact on performance  
 Extra round-trips (for fetching ACLs)  
 — but not often, cached for most of the time

Performance

• Macro-benchmarks

• Kernel compile: under 2% slowdown  
- both ext4 and NFSv3

• DokuWiki: 0% slowdown  
- playing back 6,430 revisions of 765 pages to
the DokuWiki website

36

Conclusion
• DCAC generalizes OS access control to support user/

application-defined scenarios

• DCAC avoids the requirement of root privilege in many
use cases

• DCAC does not require centralized attribute management

• DCAC coexists with DAC (discretionary access control)

37

Code available on GitHub: 
https://github.com/ut-osa/dcac

https://github.com/ut-osa/dcac

