A Modular and Efficient Past State System for Berkeley DB

Ross Shaull
NuoDB

Liuba Shrira
Brandeis University

Barbara Liskov MIT/CSAIL

Snapshots and Retrospection

- Past states of data can provide insights
 - trend analysis
 - anomaly and intrusion detection
- Auditing may require past-state retention
- Saving consistent past states (snapshots) is challenging and not available in all data stores

What is Retro

- Snapshot system for Berkeley DB implemented in a novel way
- The idea
 - Low-overhead (non-disruptive)
 - Simple programming model
 - Straightforward integration
- Approach
 - Layered design
 - Extend BDB protocols to create Retro protocols

Programming Model

```
begin;
insert into accounts values(...);
update accounts
set balance=0 where name='Tom';
commit with snapshot(S);

select as of S * from accounts
where name = 'Tom'
```

Snapshots are

Snapshots are

- Consistent
- Global
- Named
- Application-declared

Architecture

Protocol extensions

Why this design for BDB?

 Logical-level snapshots require significant modifications to the data store

Why this design for BDB?

- Logical-level snapshots require significant modifications to the data store
- With low-level snapshots, it's expensive to get consistency

Why this design for BDB?

- Logical-level snapshots require significant modifications to the data store
- With low-level snapshots, it's expensive to get consistency
- Retro is not "too high" or "too low"
 - Simple integration and nondisruptive

Overwrite sequence (OWS)

- OWS(H) is a tagging of history H
 - which page pre-states to save
 - the snapshot pages a retrospective query accesses
 - which pre-states and snapshot declarations to recover

OWS Example

SavedAfter

- Durable table that tracks latest snapshot a page was saved after
 - Tracks latest "first update after" tag from OWS(H)
- Used when
 - Performing retrospection
 - Saving snapshot pages (normal operation & recovery)
- Can be costly because it is shared data structure
 - SavedAfter Cache accelerates SavedAfter by scribbling tag on page header in page cache

Snapshot pages and Page Sharing

T1: update P1, declare S2

T2: update P1

Transactions

Page cache

Protocol extensions: Recovery

- Like database, snapshots are written asynchronously (non-disruptiveness)
- Retro saves pre-states during BDB recovery
 - Snapshot declarations are also logged
- Identify needed pre-states using SavedAfter during recovery

Protocol extension: Recovery

- Runtime invariants
 - Snapshots are made durable first: WAS-invariant
- Recovery-time extension
 - Recover snapshot metadata first
 - Idempotent: Start, SavedAfter tell if pre-state was saved already

Protocol extension: MVCC

- Concurrent access to current state and snapshots
- Efficient copying of snapshots
- Retrospection runs using MVCC and page requests are redirected to snapshot pages that have migrated to pagelog

Retrospection (querying as of)

Current state queries

Gluing it together

- Implemented as a set of callbacks
 - About 250 lines of modifications to BDB source
 - Call into about 5000 lines of snapshot layer code
- Retro is thread-safe
- Care taken to follow OWS(H) order in face of concurrency

Experimental Results

- Database and snapshot data are written to one disk, logs to the other
- Database size is 1 gb
- Snapshot store on Retro disk can be >100 gb
- Non-disruptiveness
 - Random update workload with and without Retro
 - With Retro, declare snapshot after every transaction
 - Enforcing invariants for snapshot durability imposes about 4% overhead on throughput

Retrospection: Overhead

Retrospection: I/O

Conclusions

- Simple, novel design for adding retrospection
 - Yet supports powerful programming model
- Non-disruptive, long-lived snapshots
 - Key to useful snapshot system
- Layered approach
 - Flexible and relatively low-level, generalizes
- Extended standard transactional algorithms

Thank you

• Questions?