A Modular and Efficient Past
State System for Berkeley DB

Ross Shaull Liuba Shrira Barbara Liskov
NuoDB Brandeis University MIT/CSAIL



* Past states of data can provide insights

— trend analysis

— anomaly and intrusion detection
* Auditing may require past-state retention

e Saving consistent past states (snapshots) is
challenging and not available in all data stores



What is Retro

* Snapshot system for Berkeley DB
implemented in a novel way

* Theidea
— Low-overhead (non-disruptive)
— Simple programming model
— Straightforward integration
e Approach
— Layered design
— Extend BDB protocols to create Retro protocols



Programming Model

begin;
insert into accounts values(...);

update accounts
set balance=0 where name=Tom’;

commit with snapshot(S);

select as of S * from accounts

where name = ‘Tom’



Snapshots are

e}

Consistent

Global

Named
Application-declared

June 2014
Salary: $200K




Snapshots are

Consistent

Global

Named
Application-declared

\\' June 2013
' Salary: $120K

June 2013
Snapshot

—————————————————————————————————————————————

______________________________________________



Architecture

Application

Database

Interface

Access methods / indexes

Transactional storage manager

Snapshot layer
Snapshot layer works at the page

WAL Page cache | MVCC level, inside the
T TSM

Retro Disk




Protocol extensions

Application

Database

Interface

Access methods / indexes Retro page cache

Transactional storage manager o Snapshot page

Snapshot layer translation

e Concurrency for
WAL Page cache | MVCC retrospection

Retro recovery

e Efficient COW

Retro Disk




Why this design for BDB?

Application

* Logical-level snapshots require
significant modifications to the

Database

Interface EX

data store

Snapshot layer

DB Disk Retro Disk




Why this design for BDB?

Application

* Logical-level snapshots require
significant modifications to the

data store
* With low-level snapshots, it’s
TSM

expensive to get consistency
Ce™ -_—
‘ DB Disk Retro Disk )
\

Database

Interface EX

Access methods / indexes




Why this design for BDB?

- . Application
* Logical-level snapshots require
significant modifications to the Database
data store interface [0 [0
* With low-level snapshots, it’s Access methods / indexes

expensive to get consistency -
* Retro is not “too high” or “too Snapshot layer

low”
— Simple integration and non-
disruptive S [y <
DB Disk
N~ —




Overwrite sequence (OWS)

e OWS(H) is a tagging of history H
— which page pre-states to save
— the snapshot pages a retrospective query accesses

— which pre-states and snapshot declarations to
recover



OWS Example

History

Snapshot S1

Update P

Update P

Snapshot S2

Update Q

Update P

OWS(History)

S1

S2




SavedAfter

. table that tracks latest snapshot a page
was saved after

— Tracks latest “first update after” tag from OWS(H)

* Used when
— Performing retrospection
— Saving snapshot pages (normal operation & recovery)

* Can be costly because it is shared data structure

— SavedAfter Cache accelerates SavedAfter by scribbling
tag on page header in page cache



Snapshot pages and Page Sharing

T1: update P1, declare S2
T2: update P1

Transactions Page cache
~ N
N— -
DB Disk Retro Disk
SN— _




Protocol extensions: Recovery

* Like database, snapshots are written

asynchronously (non-disruptiveness)

e Retro saves pre-states during BDB recovery

— Snapshot declarations are also logged

* |dentify needed pre-states using SavedAfter

during recovery



Protocol extension: Recovery

* Runtime invariants
— Snapshots are made durable first: WAS-invariant
* Recovery-time extension

— Recover snapshot metadata first

— I[dempotent: Start, SavedAfter tell if pre-state was
saved already



Protocol extension: MVCC

* Concurrent access to current state and
snapshots

* Efficient copying of snapshots

e Retrospection runs using MVCC and page
requests are redirected to snapshot pages
that have migrated to pagelog



Retrospection (querying as of)

Interface as of

Access methods / indexes

1 Get (DBFile, P)

Snapshot Layer

Page name translation @S1

1 Get (RetroFile, X)

Page cache
ST
"~ —

Database disk Retro disk

N I~ __F




Current state queries

Interface

Access methods / indexes

Get (DBFile, P)

Snapshot Layer

Page name translation

v
Page cache
S <—
" A
Database disk Retro disk

N I~ __F




Gluing it together

* Implemented as a set of callbacks
— About 250 lines of modifications to BDB source

— Call into about 5000 lines of snapshot layer code
* Retro is thread-safe

e Care taken to follow OWS(H) order in face of

concurrency



Experimental Results

Database and snapshot data are written to one disk,
logs to the other

Database size is 1 gb
Snapshot store on Retro disk can be >100 gb

— Random update workload with and without Retro
— With Retro, declare snapshot after every transaction

— Enforcing invariants for snapshot durability imposes
about 4% overhead on throughput



cost in terms of Q

Retrospection: Overhead

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Regﬁr(Q) Regf)d(Q)

workloads



cost in terms of Q

Retrospection: /0

[1 build page table

- - - - - -
@) Q\ \mm V@) Q\ —
~~ =~ ~~ ~~ ~~ ~~
- - - - - -
w o0 (@)} w o0 (@)
100mb Igb

skew



Conclusions

Simple, novel design for adding retrospection
— Yet supports powerful programming model

Non-disruptive, long-lived snapshots
— Key to useful snapshot system
Layered approach

— Flexible and relatively low-level, generalizes

Extended standard transactional algorithms



Thank you

e Questions?



