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* Past states of data can provide insights

— trend analysis

— anomaly and intrusion detection
* Auditing may require past-state retention

e Saving consistent past states (snapshots) is
challenging and not available in all data stores



What is Retro

* Snapshot system for Berkeley DB
implemented in a novel way

* Theidea
— Low-overhead (non-disruptive)
— Simple programming model
— Straightforward integration
e Approach
— Layered design
— Extend BDB protocols to create Retro protocols



Programming Model

begin;
insert into accounts values(...);

update accounts
set balance=0 where name=Tom’;

commit with snapshot(S);

select as of S * from accounts

where name = ‘Tom’
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Architecture
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Protocol extensions
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Why this design for BDB?
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Overwrite sequence (OWS)

e OWS(H) is a tagging of history H
— which page pre-states to save
— the snapshot pages a retrospective query accesses

— which pre-states and snapshot declarations to
recover



OWS Example
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SavedAfter

. table that tracks latest snapshot a page
was saved after

— Tracks latest “first update after” tag from OWS(H)

* Used when
— Performing retrospection
— Saving snapshot pages (normal operation & recovery)

* Can be costly because it is shared data structure

— SavedAfter Cache accelerates SavedAfter by scribbling
tag on page header in page cache



Snapshot pages and Page Sharing
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Protocol extensions: Recovery

* Like database, snapshots are written

asynchronously (non-disruptiveness)

e Retro saves pre-states during BDB recovery

— Snapshot declarations are also logged

* |dentify needed pre-states using SavedAfter

during recovery



Protocol extension: Recovery

* Runtime invariants
— Snapshots are made durable first: WAS-invariant
* Recovery-time extension

— Recover snapshot metadata first

— I[dempotent: Start, SavedAfter tell if pre-state was
saved already



Protocol extension: MVCC

* Concurrent access to current state and
snapshots

* Efficient copying of snapshots

e Retrospection runs using MVCC and page
requests are redirected to snapshot pages
that have migrated to pagelog
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Current state queries
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Gluing it together

* Implemented as a set of callbacks
— About 250 lines of modifications to BDB source

— Call into about 5000 lines of snapshot layer code
* Retro is thread-safe

e Care taken to follow OWS(H) order in face of

concurrency



Experimental Results

Database and snapshot data are written to one disk,
logs to the other

Database size is 1 gb
Snapshot store on Retro disk can be >100 gb

— Random update workload with and without Retro
— With Retro, declare snapshot after every transaction

— Enforcing invariants for snapshot durability imposes
about 4% overhead on throughput
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cost in terms of Q
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Conclusions

Simple, novel design for adding retrospection
— Yet supports powerful programming model

Non-disruptive, long-lived snapshots
— Key to useful snapshot system
Layered approach

— Flexible and relatively low-level, generalizes

Extended standard transactional algorithms



Thank you

e Questions?



