Missive:

Fast Application Launch from an Untrusted Buffer Cache

Jon Howell

Jeremy Elson

Bryan Parno

John R. Douceur

Microsoft Research

WHY NOT SKIP IT ENTIRELY,
AND MAKE A PHONE THAT HAS
EVERY APP "INSTALLED" ALREADY
AND JUST DOWNLOADS AND RUNS
THEM ON THE FLY?

I FELT PRETTY CLEVER UNTIL I REALIZED I'D INVENTED WEBPAGES.

Autonomy leads to painlessness

Client installations are not autonomous

Embassies: autonomy on the client

Minimality leads to autonomy

 memory allocation in and scheduling

all communications

crypto primitives (ran

UI is pixel blitting

Consequences of minimality

- Apps are big.
 - browser
 - rendering libraries
 - OS, filesystem
- No shared, trusted buffer cache

Why will it work?

- Commonality is available
- We can exploit it
 - to reduce network costs
 - to minimize local startup latency
- Proof of concept: cost is around ~100ms

100MiB apps have commonality

- Servers could run anything...
 but a few programs serve each function
 - OpenSSL, PolarSSL, Windows SSL
 - postfix, qmail, exim
- Embassies clients could run anything...
 - 100 "best-of" interactive desktop apps

100MiB apps have commonality

100MiB apps have commonality

Fast app launch

- Exploiting commonality to save network bandwidth
- Exploiting local commonality at low latency

App launch in Embassies

Image provenance

Zarfile structure

- Blocks vs. strings
- Block size
 - Small blocks: big recipes
 - Big blocks: extra padding
- Small-file packing
- Merkle tree degree
- File placement with consistent hashing

Small file packing

Small file packing

Small file packing

Zarfile structure

- Blocks vs. strings
- Block size
 - Small blocks: big recipes
 - Big blocks: extra padding
- Small-file packing
- Merkle tree degree
- File placement with consistent hashing

Fast verification

- SHA-1: 390ms (100MiB)
- VMAC: 29ms
 - depends on a secret
 - how can boot block have a secret?

Launch times

Summary

- Client apps exhibit commonality
- Untrusted cache costs ~100ms
- We really can deliver 100MB apps on THE FLY

