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INSTALUING THINGS HAS
GOTTEN 5? FAST AND PAINLESS.

WHY NOT SKIP IT” ENTIRELY,

AND MAKE A PHONE THAT HAS
EVERY APP “INSTALLED" ALRERADY
AND JUST DOLINLOADS AND RUNS
THEM ON THE FLY?

07

I FELT PRETTY CLEVER UNTIL T

REALIZEP ID INVENTED WEBPAGES.

http://xkcd.com/1367/



Autonomy leads to painlessness




Client installations are not
autonomous




Embassies:
autonomy on the client
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Minimality leads to autonomy
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Consequences of minimality

* Apps are big.
* browser
* rendering libraries
e O, filesystem

* No shared, trusted buffer cache
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Why will it work?

* Commonality is available

* We can exploit it
e to reduce network costs
* to minimize local startup latency

* Proof of concept: cost is around ~100ms



100MiB apps have commonality

* Servers could run anything...
but a few programs serve each function
* OpenSSL, PolarSSL, Windows SSL
* postfix, gmail, exim

* Embassies clients could run anything...
* 100 “best-of” interactive desktop apps



100MiB apps have commonality
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100MiB apps have commonality

100 Posix Packages—Startup Requirements
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Fast app launch

* Exploiting commonality to save network bandwidth
* Exploiting local commonality at low latency



App launch in Embassies
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lmage provenance
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/arfile structure

file hash
° Blocks VS. Stnngs file size [0] | root hash
flags AT
™ BIOCk Size metadata [1] [2] interior hashes
AN AN
* Small blocks: big recipes B || 4 | 8] || L |leafhashes
* Big blocks: extra padding d;a d;a d;
block | | block blogk

* Small-file packing
* Merkle tree degree
* File placement with consistent hashing



Small file packing
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Small file packing
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Small file packing




/arfile structure

* Blocks vs. strings

* Block size
* Small blocks: big recipes
* Big blocks: extra padding

* Small-file packing
* Merkle tree degree
* File placement with consistent hashing



Fast verification

 SHA-1: 390ms (100MiB)
* VMAC: 29ms

* depends on a secret
* how can boot block have a secret?



Launch times
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Summary

* Client apps exhibit commonality
* Untrusted cache costs ~100ms
* We really can deliver 100MB apps ON THE fLY
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