Missive:
Fast Application Launch
from an Untrusted Buffer
Cache

Jon Howell
Jeremy Elson
Bryan Parno
John R. Douceur
Microsoft Research

INSTALUING THINGS HAS
GOTTEN 5? FAST AND PAINLESS.

WHY NOT SKIP IT” ENTIRELY,

AND MAKE A PHONE THAT HAS
EVERY APP “INSTALLED" ALRERADY
AND JUST DOLINLOADS AND RUNS
THEM ON THE FLY?

07

I FELT PRETTY CLEVER UNTIL T

REALIZEP ID INVENTED WEBPAGES.

http://xkcd.com/1367/

Autonomy leads to painlessness

Client installations are not
autonomous

Embassies:
autonomy on the client

-

flickr
|)

a

_\

Minimality leads to autonomy

»* picoprocess:

* memory allocation in

and scheduling
% + all communications

{ 5= * crypto primitives (ran

| u;u“;umm L o
N « Ul is pixel blitting
W
W

Consequences of minimality

* Apps are big.
* browser
* rendering libraries
e O, filesystem

* No shared, trusted buffer cache

WHAT IELTOID YOU
4 a s X
(o ¢) ¢

YOU @@m LAUNCH ANAPP

(IN100ms?

A

Why will it work?

* Commonality is available

* We can exploit it
e to reduce network costs
* to minimize local startup latency

* Proof of concept: cost is around ~100ms

100MiB apps have commonality

* Servers could run anything...
but a few programs serve each function
* OpenSSL, PolarSSL, Windows SSL
* postfix, gmail, exim

* Embassies clients could run anything...
* 100 “best-of” interactive desktop apps

100MiB apps have commonality

u)10 I !) ‘ ; [
é’ — Cache Size 99 | p |
EOB— -—- Cache Size 50 L7 I
q':'06_ —— Cache Size 25 |]
3 | — - (Cache Size 12 § {3 |
90.4- — - Cache Size 6 i | | T
- Cache Size 0 5 |
802— | | | | | | | | i
Bool o A
AN N N N - N S
> >0 T EEZ 222 0 00
g g g W U W ™ = 3 = % g % vy,

100MiB apps have commonality

100 Posix Packages—Startup Requirements

)

1 GIiB
512 MiB
256 MiB
128 MiB
64 MiB
32 MiB
16 MiB
8 MiB

4 MiB

2 MiB

1 MiB
512 KiB

1256 KiB

128 KiB

Fast app launch

* Exploiting commonality to save network bandwidth
* Exploiting local commonality at low latency

App launch in Embassies

E 0o oooo

oo oooo
server/CDN/p2p

o1

DNSsec server

(1) fetch boot
block

BootBlockB L
Signature (K

(12) verify image

(13) execute image

(6) request file
BootBlockB BI H:sh(lmageB)

lmage provenance

°’7a//t N\

<3
developer's
file system

package > | complete transmit > startup launch > Estartup
' zarfile /

zarfile zarfile

at origir r at client cache in app process

Merkle
tree recipe

/arfile structure

file hash
° Blocks VS. Stnngs file size [0] | root hash
flags AT
™ BIOCk Size metadata [1] [2] interior hashes
AN AN
* Small blocks: big recipes B || 4 | 8] || L |leafhashes
* Big blocks: extra padding d;a d;a d;
block | | block blogk

* Small-file packing
* Merkle tree degree
* File placement with consistent hashing

Small file packing

-

Small file packing

1.0

o
oo

>X bytes

most files < 2-8 KB

o O o
N A O

cum. frac. files

32B 1KB 32KB _1MB 32MB

most bytes in files > 1-9 MB

ol T Embassies-initial
|| — Posix-initial

cum. frac. bytes
in files >x bytes

0
0
0.4F| — Posix-complete
0
0

file size

"32B 1KB 32KB 1MB 32MB

Small file packing

/arfile structure

* Blocks vs. strings

* Block size
* Small blocks: big recipes
* Big blocks: extra padding

* Small-file packing
* Merkle tree degree
* File placement with consistent hashing

Fast verification

 SHA-1: 390ms (100MiB)
* VMAC: 29ms

* depends on a secret
* how can boot block have a secret?

Launch times

B content load
B app start

. 1 record mac
g B verify hash
= £ B verify mac o

- wn

© [fetch
£ 800 z Q
A4
@] fo!
o -
O 600 4<5' L
= oz
m S
= o
c 400f X, &
(0]) wl
= O
S o

200t

craigslist ebay microsoft reddit gi

Summary

* Client apps exhibit commonality
* Untrusted cache costs ~100ms
* We really can deliver 100MB apps ON THE fLY

\

