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Background

What’s data deduplication?

Data deduplication is a scalable compression technique used in large-scale
backup systems.

Traditional compression compresses a piece of data (e.g., a small file) at
byte granularity.

Data deduplication compresses the entire storage system at chunk
granularity.

The fragmentation problem caused by data deduplication:

1 Slow restore (a 21X decrease!)
— data we need is dispersed physically.

2 Slow and cumbersome garbage collection
— data we do NOT need is dispersed physically.
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How the fragmentation arises

The first backup:

We have 13 chunks, most of which are UNIQUE.

Restoring this backup with 3-container-sized LRU cache requires 5
container reads.

Restoring this backup with an unlimited cache requires 4 container
reads.
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How the fragmentation arises

The second backup:

We also have 13 chunks, 9 of which are DUPLICATE.

Restoring this backup with 3-container-sized LRU cache requires 9
container reads.

Restoring this backup with an unlimited cache requires 6 container
reads.
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How the fragmentation arises

If we delete the first backup:

4 chunks (B, F, H, and K) become invalid.

We can NOT reclaim their space without additional mechanisms.

Container merge operation: migrate valid chunks into new
containers. The most time-consuming phase in garbage collection.
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Our observations and motivations

The fragmentation taxonomy

Sparse container: a container with a utilization smaller than utilization
threshold (e.g., 50%), such as Container IV for backup 2.

Out-of-order container: its chunks are intermittently referenced by a
backup, such as Container V for backup 2.
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Our observations and motivations

The negative impacts and potential solutions:

Sparse containers directly amplify read operations, hence hurt both restore
and garbage collection.

Solution: rewriting referenced chunks in them to new
compact containers, i.e., rewriting algorithm.

Out-of-order containers hurt restore if the restore cache is small.

Solution: Increasing the cache size, or developing more
intelligent replacement algorithm than LRU.
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Our observations and motivations

How existing rewriting algorithms work?

Deduplication is delayed to identify fragmented duplicate chunks.

They use a rewriting buffer and identify duplicate but fragmented
chunks in the buffer.

I The chunk M is supposed to be in a sparse container, since it has no
physical neighbor in the buffer.
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Our observations and motivations

Existing rewriting algorithms:

If we extend the rewriting buffer, more physical neighbors of M would
be found. M is in an out-of-order container rather than a sparse
container!

I NOT scalable since memory is limited.
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Our observations and motivations

The problems of existing rewriting algorithms:

They CANNOT accurately differentiate sparse containers from
out-of-order containers due to the limited size of the rewriting buffer. As a
result, they

lose too much storage efficiency, and

gain limited restore speed.

The challenge:

Due to the existence of out-of-order containers, accurately identifying
sparse containers requires the complete knowledge of the on-going backup.

How can we obtain such knowledge on the fly?
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Our observations and motivations

Rationale

Due to the incremental nature of backup, consecutive backups share
similar characteristics, including fragmentation.

Our key observations:

1 The number of total sparse containers continuously grows.
2 The number of total sparse containers increases smoothly.

I Only a limited number of emerging sparse containers in each backup.

3 A backup inherits most of the sparse containers of last backup.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 11 / 25



Design and implementation

Figure : The system architecture. Colored modules are our contributions.

Three contributions:
History-Aware Rewriting Algorithm (HAR) in backup (tackling sparse containers);

Belady’s optimal replacement algorithm (OPT) in restore (tackling out-of-order
containers);

Container-Marker Algorithm (CMA) in garbage collection (a new reference management).
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Design and implementation
History-Aware Rewriting

History-Aware Rewriting (HAR)

HAR records sparse containers during the backup, and rewrite referenced
chunks in them during next backup.

The emerging sparse containers of a backup become the inherited
sparse containers of the next backup.

Advantages:

NOT rewriting emerging sparse containers does NOT hurt restore
performance due to the limited number of emerging sparse containers
(observation 2);

Rewriting inherited sparse containers does NOT hurt backup
performance due to the limited number of inherited sparse containers
(observation 2);

Identify sparse containers accurately due to Observation 3.
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Design and implementation
Optimal cache

The problem of out-of-order containers

Out-of-order containers hurt restore performance if the restore cache is
small.

Our observations:

We restore a backup stream according to the fingerprint sequence
preserved in the recipe. As a result,

We exactly know the future access pattern of containers during the
restore.

I more intelligent cache replacement algorithms than LRU are possible.

Belady’s optimal replacement algorithm:

When the restore cache is full, the container that will not be accessed for
the longest time in the future is evicted.
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Design and implementation
Container-Marker Algorithm

Two-phased garbage collection:

1 Chunk reference management: find invalid chunks, and calculate
the utilizations of containers to identify which containers are worth
being merged (i.e., sparse containers).

I its overhead is proportional to the number of chunks.

2 Container merge: migrate valid chunks in sparse containers to new
containers.

I it competes with regular backup and urgent restore for I/O bandwidth.

Our observation:

After the latest backup referring to the sparse container is deleted, we can
directly reclaim the container rather than merging it.
Simplified reference management is possible!
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Design and implementation
Container-Marker Algorithm

Container-Marker Algorithm (CMA)

Maintains a container manifest for each dataset.
I The manifest records IDs of all containers related to the dataset.
I Each container ID is paired with a backup time that indicates the most

recent backup referring to the container.

Suppose we delete all backups before time T .
I All containers with a backup time smaller than T can be reclaimed.

The overhead is proportional to the number of containers rather than
chunks.
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Evaluation

Evaluation Methodology

We implement the baseline (no rewriting) and two existing rewriting
algorithms (CBR @ SYSTOR’12 and CAP @ FAST’13) for comparisons.

Deduplication ratio: the size of the non-deduplicated data divided by
that of the deduplicated data.

Speed factor (@ FAST’13): a metric to measure restore performance.
It’s defined as the size of restored data (MB) per container read.

The number of valid containers (the actual storage cost after GC).
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Evaluation

Table : Characteristics of datasets.

dataset name VMDK Linux Synthetic

total size 1.44TB 104GB 4.5TB

# of versions 102 258 400

deduplication ratio 25.44 45.24 37.26

avg. chunk size 10.33KB 5.29KB 12.44KB

sparse medium severe severe

out-of-order severe medium medium
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Evaluation

Table : Default settings.

fingerprint index in-memory

container size 4MB

utilization threshold 50%

caching scheme OPT

backup retention time 20 days

container merge N/A
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Evaluation
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Figure : The comparisons between HAR and other rewriting algorithms in terms
of deduplication ratio.

Conclusion (1)

HAR rewrites less data than CBR and CAP.
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Figure : The comparisons of rewriting algorithms in terms of restore performance.
The cache is 512- and 32-container-sized in VMDK and Linux respectively.

Conclusion (2)

HAR achieves better restore performane, while rewrites less data than
CBR and CAP.
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Figure : The comparisons of rewriting algorithms under various cache size. Speed
factor is the average value of last 20 backups. The cache size is in terms of # of
containers.

Conclusion (3)

HAR works significantly better when the restore cache is large.
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Figure : The comparisons of rewriting algorithms in terms of the storage cost
after garbage collection.

Conclusion (4)

After GC, HAR has lowest storage cost since it reduces sparse containers.
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More in the paper

A hybrid rewriting scheme:
I HAR+CBR;
I HAR+CAP.

More experimental results:
I For Synthetic dataset.
I Metadata overhead of garbage collection.
I Varying the utilization threshold in HAR.

Related work.
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Summary

The fragmentation taxonomy:

Sparse containers hurt both restore and garbage collection.
Out-of-order containers hurt restore if the cache is small.

History-Aware Rewriting: rewrites less data but gains more restore
speed than existing work.

I Solve the sparse container problem.

Optimal cache: reduces the cache size we require.
I Alleviate the out-of-order container problem.

Container-Marker Algorithm: simpler and lower metadata overhead.
I A new reference management.
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