
Accelerating Restore and Garbage Collection in
Deduplication-based Backup Systems via Exploiting

Historical Information

Min Fu†, Dan Feng†, Yu Hua†, Xubin He‡, Zuoning Chen*,
Wen Xia†, Fangting Huang†, Qing Liu†

†Huazhong University of Science and Technology
‡Virginia Commonwealth University,

*National Engineering Center for Parallel Computer

June 19, 2014

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 1 / 25

Background

What’s data deduplication?

Data deduplication is a scalable compression technique used in large-scale
backup systems.

Traditional compression compresses a piece of data (e.g., a small file) at
byte granularity.

Data deduplication compresses the entire storage system at chunk
granularity.

The fragmentation problem caused by data deduplication:

1 Slow restore (a 21X decrease!)
— data we need is dispersed physically.

2 Slow and cumbersome garbage collection
— data we do NOT need is dispersed physically.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 2 / 25

Background

What’s data deduplication?

Data deduplication is a scalable compression technique used in large-scale
backup systems.

Traditional compression compresses a piece of data (e.g., a small file) at
byte granularity.

Data deduplication compresses the entire storage system at chunk
granularity.

The fragmentation problem caused by data deduplication:

1 Slow restore (a 21X decrease!)
— data we need is dispersed physically.

2 Slow and cumbersome garbage collection
— data we do NOT need is dispersed physically.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 2 / 25

How the fragmentation arises

The first backup:

We have 13 chunks, most of which are UNIQUE.

Restoring this backup with 3-container-sized LRU cache requires 5
container reads.

Restoring this backup with an unlimited cache requires 4 container
reads.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 3 / 25

How the fragmentation arises

The second backup:

We also have 13 chunks, 9 of which are DUPLICATE.

Restoring this backup with 3-container-sized LRU cache requires 9
container reads.

Restoring this backup with an unlimited cache requires 6 container
reads.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 4 / 25

How the fragmentation arises

If we delete the first backup:

4 chunks (B, F, H, and K) become invalid.

We can NOT reclaim their space without additional mechanisms.

Container merge operation: migrate valid chunks into new
containers. The most time-consuming phase in garbage collection.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 5 / 25

Our observations and motivations

The fragmentation taxonomy

Sparse container: a container with a utilization smaller than utilization
threshold (e.g., 50%), such as Container IV for backup 2.

Out-of-order container: its chunks are intermittently referenced by a
backup, such as Container V for backup 2.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 6 / 25

Our observations and motivations

The negative impacts and potential solutions:

Sparse containers directly amplify read operations, hence hurt both restore
and garbage collection.

Solution: rewriting referenced chunks in them to new
compact containers, i.e., rewriting algorithm.

Out-of-order containers hurt restore if the restore cache is small.

Solution: Increasing the cache size, or developing more
intelligent replacement algorithm than LRU.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 7 / 25

Our observations and motivations

How existing rewriting algorithms work?

Deduplication is delayed to identify fragmented duplicate chunks.

They use a rewriting buffer and identify duplicate but fragmented
chunks in the buffer.

I The chunk M is supposed to be in a sparse container, since it has no
physical neighbor in the buffer.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 8 / 25

Our observations and motivations

Existing rewriting algorithms:

If we extend the rewriting buffer, more physical neighbors of M would
be found. M is in an out-of-order container rather than a sparse
container!

I NOT scalable since memory is limited.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 9 / 25

Our observations and motivations

The problems of existing rewriting algorithms:

They CANNOT accurately differentiate sparse containers from
out-of-order containers due to the limited size of the rewriting buffer. As a
result, they

lose too much storage efficiency, and

gain limited restore speed.

The challenge:

Due to the existence of out-of-order containers, accurately identifying
sparse containers requires the complete knowledge of the on-going backup.

How can we obtain such knowledge on the fly?

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 10 / 25

Our observations and motivations

The problems of existing rewriting algorithms:

They CANNOT accurately differentiate sparse containers from
out-of-order containers due to the limited size of the rewriting buffer. As a
result, they

lose too much storage efficiency, and

gain limited restore speed.

The challenge:

Due to the existence of out-of-order containers, accurately identifying
sparse containers requires the complete knowledge of the on-going backup.

How can we obtain such knowledge on the fly?

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 10 / 25

Our observations and motivations

Rationale

Due to the incremental nature of backup, consecutive backups share
similar characteristics, including fragmentation.

Our key observations:

1 The number of total sparse containers continuously grows.
2 The number of total sparse containers increases smoothly.

I Only a limited number of emerging sparse containers in each backup.

3 A backup inherits most of the sparse containers of last backup.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 11 / 25

Design and implementation

Figure : The system architecture. Colored modules are our contributions.

Three contributions:
History-Aware Rewriting Algorithm (HAR) in backup (tackling sparse containers);

Belady’s optimal replacement algorithm (OPT) in restore (tackling out-of-order
containers);

Container-Marker Algorithm (CMA) in garbage collection (a new reference management).

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 12 / 25

Design and implementation
History-Aware Rewriting

History-Aware Rewriting (HAR)

HAR records sparse containers during the backup, and rewrite referenced
chunks in them during next backup.

The emerging sparse containers of a backup become the inherited
sparse containers of the next backup.

Advantages:

NOT rewriting emerging sparse containers does NOT hurt restore
performance due to the limited number of emerging sparse containers
(observation 2);

Rewriting inherited sparse containers does NOT hurt backup
performance due to the limited number of inherited sparse containers
(observation 2);

Identify sparse containers accurately due to Observation 3.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 13 / 25

Design and implementation
History-Aware Rewriting

History-Aware Rewriting (HAR)

HAR records sparse containers during the backup, and rewrite referenced
chunks in them during next backup.

The emerging sparse containers of a backup become the inherited
sparse containers of the next backup.

Advantages:

NOT rewriting emerging sparse containers does NOT hurt restore
performance due to the limited number of emerging sparse containers
(observation 2);

Rewriting inherited sparse containers does NOT hurt backup
performance due to the limited number of inherited sparse containers
(observation 2);

Identify sparse containers accurately due to Observation 3.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 13 / 25

Design and implementation
Optimal cache

The problem of out-of-order containers

Out-of-order containers hurt restore performance if the restore cache is
small.

Our observations:

We restore a backup stream according to the fingerprint sequence
preserved in the recipe. As a result,

We exactly know the future access pattern of containers during the
restore.

I more intelligent cache replacement algorithms than LRU are possible.

Belady’s optimal replacement algorithm:

When the restore cache is full, the container that will not be accessed for
the longest time in the future is evicted.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 14 / 25

Design and implementation
Optimal cache

The problem of out-of-order containers

Out-of-order containers hurt restore performance if the restore cache is
small.

Our observations:

We restore a backup stream according to the fingerprint sequence
preserved in the recipe. As a result,

We exactly know the future access pattern of containers during the
restore.

I more intelligent cache replacement algorithms than LRU are possible.

Belady’s optimal replacement algorithm:

When the restore cache is full, the container that will not be accessed for
the longest time in the future is evicted.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 14 / 25

Design and implementation
Optimal cache

The problem of out-of-order containers

Out-of-order containers hurt restore performance if the restore cache is
small.

Our observations:

We restore a backup stream according to the fingerprint sequence
preserved in the recipe. As a result,

We exactly know the future access pattern of containers during the
restore.

I more intelligent cache replacement algorithms than LRU are possible.

Belady’s optimal replacement algorithm:

When the restore cache is full, the container that will not be accessed for
the longest time in the future is evicted.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 14 / 25

Design and implementation
Container-Marker Algorithm

Two-phased garbage collection:

1 Chunk reference management: find invalid chunks, and calculate
the utilizations of containers to identify which containers are worth
being merged (i.e., sparse containers).

I its overhead is proportional to the number of chunks.

2 Container merge: migrate valid chunks in sparse containers to new
containers.

I it competes with regular backup and urgent restore for I/O bandwidth.

Our observation:

After the latest backup referring to the sparse container is deleted, we can
directly reclaim the container rather than merging it.
Simplified reference management is possible!

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 15 / 25

Design and implementation
Container-Marker Algorithm

Two-phased garbage collection:

1 Chunk reference management: find invalid chunks, and calculate
the utilizations of containers to identify which containers are worth
being merged (i.e., sparse containers).

I its overhead is proportional to the number of chunks.

2 Container merge: migrate valid chunks in sparse containers to new
containers.

I it competes with regular backup and urgent restore for I/O bandwidth.

Our observation:

After the latest backup referring to the sparse container is deleted, we can
directly reclaim the container rather than merging it.
Simplified reference management is possible!

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 15 / 25

Design and implementation
Container-Marker Algorithm

Container-Marker Algorithm (CMA)

Maintains a container manifest for each dataset.
I The manifest records IDs of all containers related to the dataset.
I Each container ID is paired with a backup time that indicates the most

recent backup referring to the container.

Suppose we delete all backups before time T .
I All containers with a backup time smaller than T can be reclaimed.

The overhead is proportional to the number of containers rather than
chunks.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 16 / 25

Evaluation

Evaluation Methodology

We implement the baseline (no rewriting) and two existing rewriting
algorithms (CBR @ SYSTOR’12 and CAP @ FAST’13) for comparisons.

Deduplication ratio: the size of the non-deduplicated data divided by
that of the deduplicated data.

Speed factor (@ FAST’13): a metric to measure restore performance.
It’s defined as the size of restored data (MB) per container read.

The number of valid containers (the actual storage cost after GC).

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 17 / 25

Evaluation

Table : Characteristics of datasets.

dataset name VMDK Linux Synthetic

total size 1.44TB 104GB 4.5TB

of versions 102 258 400

deduplication ratio 25.44 45.24 37.26

avg. chunk size 10.33KB 5.29KB 12.44KB

sparse medium severe severe

out-of-order severe medium medium

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 18 / 25

Evaluation

Table : Default settings.

fingerprint index in-memory

container size 4MB

utilization threshold 50%

caching scheme OPT

backup retention time 20 days

container merge N/A

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 19 / 25

Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

VMDK Linux Synthetic

d
ed

u
p
li

ca
ti

o
n
 r

at
io

baseline
CBR
CAP
HAR

Figure : The comparisons between HAR and other rewriting algorithms in terms
of deduplication ratio.

Conclusion (1)

HAR rewrites less data than CBR and CAP.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 20 / 25

Evaluation

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

sp
ee

d
 f

ac
to

r

version number

baseline(LRU)
baseline(OPT)

CBR

CAP
HAR

(a) VMDK

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

sp
ee

d
 f

ac
to

r

version number

baseline(LRU)
baseline(OPT)

CBR

CAP
HAR

(b) Linux

Figure : The comparisons of rewriting algorithms in terms of restore performance.
The cache is 512- and 32-container-sized in VMDK and Linux respectively.

Conclusion (2)

HAR achieves better restore performane, while rewrites less data than
CBR and CAP.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 21 / 25

Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

64 128 256 512 1024 2048 4096

sp
ee

d
 f

ac
to

r

cache size

baseline
CBR

CAP
HAR

(a) VMDK

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 8 16 32 64 128 256

sp
ee

d
 f

ac
to

r

cache size

baseline
CBR

CAP
HAR

(b) Linux

Figure : The comparisons of rewriting algorithms under various cache size. Speed
factor is the average value of last 20 backups. The cache size is in terms of # of
containers.

Conclusion (3)

HAR works significantly better when the restore cache is large.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 22 / 25

Evaluation

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 20 30 40 50 60 70 80 90 100

#
 o

f
v

a
li

d
 c

o
n

ta
in

e
rs

version number

baseline

CBR

CAP

HAR

(a) VMDK

 100

 200

 300

 400

 500

 600

 700

 800

 20 45 70 95 120 145 170 195 220 245

#
 o

f
v

a
li

d
 c

o
n

ta
in

e
rs

version number

baseline

CBR

CAP

HAR

(b) Linux

Figure : The comparisons of rewriting algorithms in terms of the storage cost
after garbage collection.

Conclusion (4)

After GC, HAR has lowest storage cost since it reduces sparse containers.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 23 / 25

More in the paper

A hybrid rewriting scheme:
I HAR+CBR;
I HAR+CAP.

More experimental results:
I For Synthetic dataset.
I Metadata overhead of garbage collection.
I Varying the utilization threshold in HAR.

Related work.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 24 / 25

Summary

The fragmentation taxonomy:

Sparse containers hurt both restore and garbage collection.
Out-of-order containers hurt restore if the cache is small.

History-Aware Rewriting: rewrites less data but gains more restore
speed than existing work.

I Solve the sparse container problem.

Optimal cache: reduces the cache size we require.
I Alleviate the out-of-order container problem.

Container-Marker Algorithm: simpler and lower metadata overhead.
I A new reference management.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Fangting Huang

†
, Qing Liu

†
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University,

*
National Engineering Center for Parallel Computer)Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via Exploiting Historical InformationJune 19, 2014 25 / 25

