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Mutable State in a Recommender System

: . User-ltem matrix (Ul)
Matrix userltem = new Matrix();
Matrix coOcc = new Matrix(); Item-A | Item-B

void addRating(int user, int item, int rating) { User-A 4 5

userltem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userltem);

}

Vector getRec(int user) {
Vector userRow = userltem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;

} /
\ Co-Occurrence matrix (CO)

[tem-A | ltem-B

Update User-B 0 5

with new
ratings

User-B [1]|2] X | Item-A 1 1

_ ltem-B 1 2
Multiply for
recommendation




Challenges When Executing with Big Data

> Mutable state leads to concise algorithms but
complicates parallelism and fault tolerance

( ) Big Data Problem:
Matrix userltem = new Matrix(); Matrices
Matrix coOcc = new Matrix(); become large

\_ J

> Cannot lose state after failure

> Need to manage state to support data-parallelism



Using Current Distributed Dataflow Frameworks

Input Output
data data

> No mutable state simplifies fault tolerance

> MapReduce: Map and Reduce tasks
> Storm: No support for state
> Spark: Immutable RDDs



Imperative Big Data Processing

> Programming distributed dataflow graphs
requires learning new programming models

Our Goal:
Run Java programs with mutable state but with

performance and fault tolerance of
distributed dataflow systems




Stateful Dataflow Graphs: From Imperative
Programs to Distributed Dataflows

4 )

Program.java ‘ ‘
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SDGs: Stateful Dataflow Graphs

> Mutable distributed state in dataflow graphs
> @Annotations help with translation from Java to SDGs

> Checkpoint-based fault tolerance recovers mutable state
after failure
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* SDG: Stateful Dataflow Graphs
* Handling distributed state in SDGs
* Translating Java programs to SDGs

* Checkpoint-based fault tolerance for SDGs

* Experimental evaluation




SDG: Data, State and Computation

> SDGs separate data and state
to allow data and pipeline parallelism

Task Elements (TEs)
process data

State Elements (SEs)
represent state

Dataflows
represent
data

> Task Elements have local access to State Elements



Distributed Mutable State

State Elements support two abstractions for
distributed mutable state

— Partitioned SEs: task elements always access
state by key

— Partial SEs: task elements can access
complete state



Distributed Mutable State: Partitioned SEs

> Partitioned SEs split into disjoint partitions

A [0-k]

User-ltem matrix (Ul)

[tem-A | Item-B

hash(msg.id) Access Dser-A 4 >
by key ) | User-B| 0 5
Dataflow routed according to State partitioned according

hash function to partitioning key
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Distributed Mutable State: Partial SEs

> Partial SE gives nodes local state instances

¢
""

> Partial SE access by Tes can be local or global

o (@ -

o

Local access: Global access:
Data sent to one Data sent to all
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Merging Distributed Mutable State

> Reading all partial SE instances results in
set of partial values

Merge logic

Collect partial
values

Multiple
partial values

> Requires application-specific merge logic
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* Translating Java programs to SDGs
* Checkpoint-based fault tolerance for SDGs

* Experimental evaluation

13



From Imperative Code to Execution

* Translation occurs in two stages:

— Static code analysis: From Java to SDG

— Bytecode rewriting: From SDG to SEEP [siGmoD13]

Annotated
program
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> SEEP: data-parallel processing platform
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Translation Process
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Annotated
Program.java
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# Extract TEs, SEs » Live variable
and accesses analysis

—

SOOT

»
Framework

> Extract state and state access patterns through static code analysis

-
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TE and SE access ‘ g @ -

§ % # >_
[ code assembly ] vl

SEEP runnable

=~ Javassist

> Generation of runnable code using TE and SE connections
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Partitioned State Annotation

@Partitioned Matrix userltem = new SeepMatrix();

userltem.setElement(user, item, rating);
hash(msg.id)

Vector userRow = userltem.getRow(user);

> @Partition field annotation indicates partitioned state
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Partial State and Global Annotations

@Partial Matrix coOcc = new SeepMatrix();

J/\V

updateCoOccurrence(@Global coOcc, userltem);

> @Partial field annotation indicates partial state

> @Global annotates variable to indicate
access to all partial instances

17



Partial and Collection Annotations

@Partial Matrix coOcc = new SeepMatrix();

@Partial Vector puRec = @Global coOcc.multiply(userRow);

-
oy

Vector merge(@Collection Vector([] v){

> @Collection annotation indicates merge logic

18



-

\_

Program.java

~

J

Outline

————————\

f

- |
|

> Failures |

NN — - —

* Checkpoint-Based fault tolerance for SDGs

* Experimental evaluation
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Challenges of Making SDGs Fault Tolerant

N\ (——— )

nodes

> Task elements access

_ )O_é local in-memory state

\ ) \ J .
. > Node failures may
Physical deployment of SDG
lead to state loss

Checkpointing State State Backup
* No updates allowed while state * Backups large and cannot be
is being checkpointed stored in memory
* Checkpointing state should not * Large writes to disk through

impact data processing path network have high cost

20



Checkpoint Mechanism for Fault Tolerance

Dirty state
\
Asynchronous, lock-free checkpointing
A 1. Freeze mutable state for checkpointing
w 2. Dirty state supports updates concurrently
‘ 3. Reconcile dirty state




Distributed M to N Checkpoint Backup
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/ parallel recovery
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I v o, M to N distributed backup and
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Evaluation of SDG Performance

How does mutable state impact performance?
How efficient are translated SDGs?
What is the throughput/latency trade-off?

Experimental set-up:

— Amazon EC2 (c1 and m1 xlarge instances)
— Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM )

— SunJava 7, Ubuntu 12.04, Linux kernel 3.10



Processing with Large Mutable State

> addRating and getRec functions from recommender
algorithm, while changing read/write ratio
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Combines batch and online processing to serve fresh

results over large mutable state 24



Throughput (GB/s)
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Efficiency of Translated SDG

> Batch-oriented, iterative logistic regression

SDG ---x-- >|<

25 50 75 100
Number of nodes

Translated SDG achieves performance

similar to non-mutable dataflow
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Latency/Throughput Tradeoff

> Streaming word count query, reporting
counts over windows
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SDGs achieve high throughput while mainting low latency
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Summary

Running Java programs with the performance of
current distributed dataflow frameworks

SDG: Stateful Dataflow Graphs

— Abstractions for distributed mutable state

— Annotations to disambiguate types of
distributed state and state access

— Checkpoint-based fault tolerance mechanism

https://github.com/Isds/Seep/

Thank youl! Raul Castro Fernandez
Any Questions? rc3011@doc.ic.ac.uk



