Imperial College

| ondon

G

LD

University of

e
S CITY UNIVERSITY
I<(.)nt A\ /.. LONDON

Making State Explicit for
Imperative Big Data Processing

Raul Castro Fernandez

Imperial College London
rc3011@doc.ic.ac.uk

Eva Kalyvianaki
City University London

evangelia.kalyvianaki.1@city.ac.uk

| SDS

Large-Scale Distributed Systems Group

Matteo Migliavacca

University of Kent
mm53@kent.ac.uk

Peter Pietzuch

Imperial College London
prp@doc.ic.ac.uk

USENIX Annutal Technical Conference 2014

Mutable State in a Recommender System

: . User-ltem matrix (Ul)
Matrix userltem = new Matrix();
Matrix coOcc = new Matrix(); Item-A | Item-B

void addRating(int user, int item, int rating) { User-A 4 5

userltem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userltem);

}

Vector getRec(int user) {
Vector userRow = userltem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;

} /
\ Co-Occurrence matrix (CO)

[tem-A | ltem-B

Update User-B 0 5

with new
ratings

User-B [1]|2] X | Item-A 1 1

_ ltem-B 1 2
Multiply for
recommendation

Challenges When Executing with Big Data

> Mutable state leads to concise algorithms but
complicates parallelism and fault tolerance

() Big Data Problem:
Matrix userltem = new Matrix(); Matrices
Matrix coOcc = new Matrix(); become large

_ J

> Cannot lose state after failure

> Need to manage state to support data-parallelism

Using Current Distributed Dataflow Frameworks

Input Output
data data

> No mutable state simplifies fault tolerance

> MapReduce: Map and Reduce tasks
> Storm: No support for state
> Spark: Immutable RDDs

Imperative Big Data Processing

> Programming distributed dataflow graphs
requires learning new programming models

Our Goal:
Run Java programs with mutable state but with

performance and fault tolerance of
distributed dataflow systems

Stateful Dataflow Graphs: From Imperative
Programs to Distributed Dataflows

4)

Program.java ‘ ‘

- J

SDGs: Stateful Dataflow Graphs

> Mutable distributed state in dataflow graphs
> @Annotations help with translation from Java to SDGs

> Checkpoint-based fault tolerance recovers mutable state
after failure

Outline

-

-

~N

Program.java

J

* SDG: Stateful Dataflow Graphs
* Handling distributed state in SDGs
* Translating Java programs to SDGs

* Checkpoint-based fault tolerance for SDGs

* Experimental evaluation

SDG: Data, State and Computation

> SDGs separate data and state
to allow data and pipeline parallelism

Task Elements (TEs)
process data

State Elements (SEs)
represent state

Dataflows
represent
data

> Task Elements have local access to State Elements

Distributed Mutable State

State Elements support two abstractions for
distributed mutable state

— Partitioned SEs: task elements always access
state by key

— Partial SEs: task elements can access
complete state

Distributed Mutable State: Partitioned SEs

> Partitioned SEs split into disjoint partitions

A [0-k]

User-ltem matrix (Ul)

[tem-A | Item-B

hash(msg.id) Access Dser-A 4 >
by key) | User-B| 0 5
Dataflow routed according to State partitioned according

hash function to partitioning key

10

Distributed Mutable State: Partial SEs

> Partial SE gives nodes local state instances

¢
""

> Partial SE access by Tes can be local or global

o (@ -

o

Local access: Global access:
Data sent to one Data sent to all

11

Merging Distributed Mutable State

> Reading all partial SE instances results in
set of partial values

Merge logic

Collect partial
values

Multiple
partial values

> Requires application-specific merge logic

12

Outline

————————\

([(——
|
|

Program.java ‘ I ‘

\ J
\> @Annotations

—_—— e ————

* Translating Java programs to SDGs
* Checkpoint-based fault tolerance for SDGs

* Experimental evaluation

13

From Imperative Code to Execution

* Translation occurs in two stages:

— Static code analysis: From Java to SDG

— Bytecode rewriting: From SDG to SEEP [siGmoD13]

Annotated
program

-

-

Program.java

~

J

-

> SEEP: data-parallel processing platform

14

Translation Process

4)

Annotated
Program.java

_ J

RTINS X
® 0
ONON®

—

Extract TEs, SEs » Live variable
and accesses analysis

—

SOOT

»
Framework

> Extract state and state access patterns through static code analysis

-

‘) \

TE and SE access ‘ g @ -

§ % # >_
[code assembly] vl

SEEP runnable

=~ Javassist

> Generation of runnable code using TE and SE connections

15

Partitioned State Annotation

@Partitioned Matrix userltem = new SeepMatrix();

userltem.setElement(user, item, rating);
hash(msg.id)

Vector userRow = userltem.getRow(user);

> @Partition field annotation indicates partitioned state

16

Partial State and Global Annotations

@Partial Matrix coOcc = new SeepMatrix();

J/\V

updateCoOccurrence(@Global coOcc, userltem);

> @Partial field annotation indicates partial state

> @Global annotates variable to indicate
access to all partial instances

17

Partial and Collection Annotations

@Partial Matrix coOcc = new SeepMatrix();

@Partial Vector puRec = @Global coOcc.multiply(userRow);

-
oy

Vector merge(@Collection Vector([] v){

> @Collection annotation indicates merge logic

18

-

_

Program.java

~

J

Outline

————————\

f

- |
|

> Failures |

NN — - —

* Checkpoint-Based fault tolerance for SDGs

* Experimental evaluation

19

Challenges of Making SDGs Fault Tolerant

N\ (———)

nodes

> Task elements access

_)O_é local in-memory state

\) \ J .
. > Node failures may
Physical deployment of SDG
lead to state loss

Checkpointing State State Backup
* No updates allowed while state * Backups large and cannot be
is being checkpointed stored in memory
* Checkpointing state should not * Large writes to disk through

impact data processing path network have high cost

20

Checkpoint Mechanism for Fault Tolerance

Dirty state
\
Asynchronous, lock-free checkpointing
A 1. Freeze mutable state for checkpointing
w 2. Dirty state supports updates concurrently
‘ 3. Reconcile dirty state

Distributed M to N Checkpoint Backup

| e

—

&
©

J

/ parallel recovery

74
f 22

I v o, M to N distributed backup and
_ :

Evaluation of SDG Performance

How does mutable state impact performance?
How efficient are translated SDGs?
What is the throughput/latency trade-off?

Experimental set-up:

— Amazon EC2 (c1 and m1 xlarge instances)
— Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM)

— SunJava 7, Ubuntu 12.04, Linux kernel 3.10

Processing with Large Mutable State

> addRating and getRec functions from recommender
algorithm, while changing read/write ratio

© 20 — , | | |
D

S T -

S - - 41000 g
S i'_l_: :T_it?\}::_} L:lj‘. :_Lll] N
St L T = 5
: _i_ i I_I_I :___: i B
2 -t I : : I 3]
& 5r . | L | —
%) Th —i—_L' _:__ _1

= roughput —+— 1100

o Latency :

< 0 l l l 1 |

- ;5 12 11 211 5

Workload (state read/write ratio)

Combines batch and online processing to serve fresh

results over large mutable state 24

Throughput (GB/s)

60
50
40
30
20
10

Efficiency of Translated SDG

> Batch-oriented, iterative logistic regression

SDG ---x-- >|<

25 50 75 100
Number of nodes

Translated SDG achieves performance

similar to non-mutable dataflow

25

Latency/Throughput Tradeoff

> Streaming word count query, reporting
counts over windows

4\3 250 | - |

7)) N SR - 1

% 200 B (- L T[RRI [eeeeernnemnnennes B o)

o

o

§ 150 F —t ,):6 _____ p— % _--—-—:?:T‘)"(

A\ 100 (R Koo * X - : r,f* ----- - Kowommomon- - - - K

E"_ / Naiad-HighThroughput &
e 50 + /'I SDG ——
S / Streaming Spark --%--
O s Naiad-LowLatency --%--
c 0 . S N My LN
= 10 100 1000 10000

Window size (ms)

SDGs achieve high throughput while mainting low latency

26

Summary

Running Java programs with the performance of
current distributed dataflow frameworks

SDG: Stateful Dataflow Graphs

— Abstractions for distributed mutable state

— Annotations to disambiguate types of
distributed state and state access

— Checkpoint-based fault tolerance mechanism

https://github.com/Isds/Seep/

Thank youl! Raul Castro Fernandez
Any Questions? rc3011@doc.ic.ac.uk

