Making State Explicit for Imperative Big Data Processing

Raul Castro Fernandez
Imperial College London
rc3011@doc.ic.ac.uk

Matteo Migliavacca
University of Kent
mm53@kent.ac.uk

Eva Kalyvianaki
City University London
evangelia.kalyvianaki.1@city.ac.uk

Peter Pietzuch
Imperial College London
prp@doc.ic.ac.uk
Mutable State in a Recommender System

Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) {
 userItem.setElement(user, item, rating);
 updateCoOccurrence(coOcc, userItem);
}

Vector getRec(int user) {
 Vector userRow = userItem.getRow(user);
 Vector userRec = coOcc.multiply(userRow);
 return userRec;
}
Challenges When Executing with Big Data

> **Mutable state** leads to concise algorithms but complicates **parallelism** and **fault tolerance**

```java
Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();
```

Big Data Problem: Matrices become large

> Cannot lose state after failure

> Need to manage state to support data-parallelism
Using Current Distributed Dataflow Frameworks

> No mutable state simplifies fault tolerance

> **MapReduce**: Map and Reduce tasks
> **Storm**: No support for state
> **Spark**: Immutable RDDs
Our Goal:
Run Java programs with mutable state but with performance and fault tolerance of distributed dataflow systems

Imperative Big Data Processing

> Programming distributed dataflow graphs requires learning new programming models
Stateful Dataflow Graphs: From Imperative Programs to Distributed Dataflows

Program.java

SDGs: Stateful Dataflow Graphs

> Mutable distributed state in dataflow graphs
> @Annotations help with translation from Java to SDGs
> Checkpoint-based fault tolerance recovers mutable state after failure
• **SDG: Stateful Dataflow Graphs**
• Handling distributed state in SDGs
• Translating Java programs to SDGs
• Checkpoint-based fault tolerance for SDGs
• Experimental evaluation
SDG: Data, State and Computation

> SDGs separate **data and state** to allow **data and pipeline parallelism**

Task Elements (TEs) process data

State Elements (SEs) represent state

Dataflows represent data

> Task Elements have **local access** to State Elements
Distributed Mutable State

State Elements support two abstractions for distributed mutable state

- **Partitioned SEs**: task elements always access state by key
- **Partial SEs**: task elements can access complete state
Distributed Mutable State: Partitioned SEs

> **Partitioned** SEs split into disjoint partitions

Key space: [0-N] → [0-k] → [(k+1)-N]

Dataflow routed according to **hash** function

User-Item matrix (**UI**)

<table>
<thead>
<tr>
<th></th>
<th>Item-A</th>
<th>Item-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-A</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>User-B</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

State partitioned according to **partitioning** key
Distributed Mutable State: Partial SEs

> **Partial** SE gives nodes local state instances

> **Partial** SE access by Tes can be *local* or *global*

Local access:
Data sent to one

Global access:
Data sent to all
Merging Distributed Mutable State

> Reading all partial SE instances results in set of **partial** values

> Requires application-specific merge logic
Outline

- SDG: Stateful Dataflow Graphs
- Handling distributed state in SDGs
- Translating Java programs to SDGs
- Checkpoint-based fault tolerance for SDGs
- Experimental evaluation
From Imperative Code to Execution

• Translation occurs in two stages:
 – Static code analysis: From Java to SDG
 – Bytecode rewriting: From SDG to SEEP [SIGMOD’13]

> SEEP: data-parallel processing platform
Translation Process

Annotated Program.java → Extract TEs, SEs and accesses → Live variable analysis

SOOT Framework

> Extract **state** and **state access patterns** through static code analysis

TE and SE access code assembly → SEEP runnable

Javassist

> Generation of **runnable code** using TE and SE connections
Partitioned State Annotation

@Partitioned Matrix userItem = new SeepMatrix();
Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) {
 userItem.setElement(user, item, rating);
 updateCoOccurrence(coOcc, userItem);
}

Vector getRec(int user) {
 Vector userRow = userItem.getRow(user);
 Vector userRec = coOcc.multiply(userRow);
 return userRec;
}

> @Partition field annotation indicates partitioned state
Partial State and Global Annotations

```java
@Partitioned Matrix userItem = new SeepMatrix();
@Partial Matrix coOcc = new SeepMatrix();

void addRating(int user, int item, int rating) {
  userItem.setElement(user, item, rating);
  updateCoOccurrence(@Global coOcc, userItem);
}
```

> **@Partial field annotation** indicates *partial* state

> **@Global** annotates variable to indicate access to all partial instances
Partial and Collection Annotations

@Partitioned Matrix userItem = new SeepMatrix();
@Partial Matrix coOcc = new SeepMatrix();

Vector getRec(int user) {
 Vector userRow = userItem.getRow(user);
 @Partial Vector puRec = @Global coOcc.multiply(userRow);
 Vector userRec = merge(puRec);
 return userRec;
}

Vector merge(@Collection Vector[] v){
 /* ... */
}

> @Collection annotation indicates merge logic
Outline

- SDG: Stateful Dataflow Graphs
- Handling distributed state in SDGs
- Translating Java programs to SDGs
- **Checkpoint-Based fault tolerance for SDGs**
- Experimental evaluation
Challenges of Making SDGs Fault Tolerant

Physical deployment of SDG

• Backups large and cannot be stored in memory
• Large writes to disk through network have high cost

> Task elements access local in-memory state
> Node failures may lead to state loss

Checkpointing State
• No updates allowed while state is being checkpointed
• Checkpointing state should not impact data processing path

State Backup
Checkpoint Mechanism for Fault Tolerance

1. Freeze mutable state for checkpointing
2. Dirty state supports updates concurrently
3. Reconcile dirty state

Asynchronous, lock-free checkpointing
Distributed M to N Checkpoint Backup

M to N distributed backup and parallel recovery
Evaluation of SDG Performance

How does mutable state impact performance?
How efficient are translated SDGs?
What is the throughput/latency trade-off?

Experimental set-up:
– Amazon EC2 (c1 and m1 xlarge instances)
– Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM)
– Sun Java 7, Ubuntu 12.04, Linux kernel 3.10
Processing with Large Mutable State

> addRating and getRec functions from recommender algorithm, while changing read/write ratio

Combines batch and online processing to serve fresh results over large mutable state
Efficiency of Translated SDG

> Batch-oriented, iterative logistic regression

Translated SDG achieves performance similar to non-mutable dataflow
Latency/Throughput Tradeoff

> Streaming word count query, reporting counts over windows

SDGs achieve high throughput while maintaining low latency
Running Java programs with the performance of current distributed dataflow frameworks

SDG: Stateful Dataflow Graphs

- Abstractions for distributed mutable state
- Annotations to disambiguate types of distributed state and state access
- Checkpoint-based fault tolerance mechanism

https://github.com/lsds/Seep/

Thank you! Any Questions? Raul Castro Fernandez rc3011@doc.ic.ac.uk