
		
Labtainers:	

A	Docker-based	Framework	for	Cybersecurity	Labs	
		

USENIX	Workshop	on	Advances	in	Security	Education	
15	August	2017	

		

Cynthia	Irvine,	Michael	Thompson,		
Michael	McCarrin,	and	Jean	Khosalim	

Department	of	Computer	Science	
Naval	Postgraduate	School	

	

NCS,	8	June	2017	

Experiential	learning	is	desirable,	but	…	

•  Institutional	infrastructure	may	be	absent	
•  Labs	are	difficult	to	build	and	difficult	to	maintain	

-  Overworked	instructors	need	well-vetted	labs	

•  Student	platform	diversity	introduces	problems	
-  Different	operating	systems,	libraries,	software	tools,	etc.	
-  Platform	setup	for	lab	distracts	from	learning	objectives	
-  Lab	results	vary	widely	due	to	configuration	differences		

•  Experiential	labs	require	exploration	
-  How	is	this	observed?	

•  Students	may	share	or	reuse	other	work	
-  Need	individualized	labs,	but	grading	effort	becomes	large	

ASE,	15	Aug	2017	 22	

NCS,	8	June	2017	

Labtainers	Objectives	

33	ASE,	15	Aug	2017	

Consistent	and	Fair	
•  Students	execute	labs	in	identical	environments	
•  Instructors	see	consistent	results	and	assess	students	on	their	work	

rather	than	environmental	effects	

Parameterizable	
•  Labs	configured	so	each	student’s	work	can	be	unique		
•  Labs	are	same	level	of	difficulty	for	all	students	
•  Expected	results	are	parameterized	to	streamline	grading	

Support	for	Automatic	Assessment	
•  Collected	student	work	is	parsed	for	specific	outputs	
•  Tools	may	be	developed	to	support	assessment	of	particular	aspects	

of	exercise	

NCS,	8	June	2017	

Stand-alone	Linux	Cybersecurity	Labs	

• Multi-component	network	topologies	
-  Packaged	using	Docker	containers	
-  Pre-configured	execution	environments	

•  Local	to	student’s	computer	
-  One	Linux	host,	(e.g.,	VM)	runs	many	containers	
-  No	per-lab	provisioning	required	by	the	student	

• Public	repository	of	labs	&	open	framework	
	

ASE,	15	Aug	2017	 44	

NCS,	8	June	2017	

Architecture	

•  Linux	can	run	in	a	VM	on	a	non-Linux	platform	
•  Preconfigured	containers	ensure	consistency	across	

heterogeneous	platforms	
ASE,	15	Aug	2017	 5	

Hardware	

Linux	

Docker	Engine	

Bins/Libs	 Bins/Libs	

A
pp

	A
’’	

A
pp

	B
’	

Other	Applications	

A
pp

	A
’	

A
pp

	A
	

A
pp

	B
	

NCS,	8	June	2017	

Why	Containers?	

•  Similar	resource	and	naming	isolation	
-  Dockerfiles	simplify	provisioning	of	containers	

•  Student	laptop	can	run	several	containers	
-  But	may	be	bogged	down	by	2	or	more	VMs	
-  Enables	labs	with	many	networked	components	

• All	containers	share	Linux	kernel	with	host		
-  But	can	have	distinct	packages	&	library	versions	
-  Containers	limited	to	Linux	

ASE,	15	Aug	2017	 66	

NCS,	8	June	2017	

Parameterization	

•  Individualizes	labs	for	each	student	(optional)	
• Random	number	seed	based	on	student	email	
•  Example:	size	of	buffer	to	overflow	

-  Symbolic	replacement	of	value	in	source	code	
-  Vulnerable	program	compiled	during	first	run		
-  Affects	offset	of	return	address	to	overwrite	

ASE,	15	Aug	2017	 77	

NCS,	8	June	2017	

Automated	Assessment	

•  Student	activity	and	files	collected	as	artifacts	
-  Mostly	transparent	to	students,	they	see	Linux	
-  Bash	hooks	capture	stdin	&	stdout	
-  Artifacts	forwarded	to	instructor	

•  Instructor	tools	assess	student	performance	
-  Expected	results	as	defined	by	lab	designer	
-  View	of	student’s	file	and	ability	to	run	programs	

•  Lab	exercises	individualized	for	students	
-  Discourages	sharing	answers	&	solution	mining	
-  Automated	assessment	makes	this	practical	

ASE,	15	Aug	2017	 88	

NCS,	8	June	2017	

Roles	in	the	World	of	Labtainers	

Student	
Performs	 lab	 exercise.	 Learns!	 Delivers	 results	 to	 instructor	 for	
assessment.		

Designer	
SME	who	works	with	 instructor	 to	 create	 labs	 based	on	 learning	
objectives.	 Fine	 tunes	 and	 updates	 labs.	 May	 support	 auxiliary	
assessment	tools.	

Instructor	
Defines	 learning	 objectives.	Works	 with	 (or	 is)	 designer.	 Ensures	
student	readiness	to	perform	labs	and	conducts	assessments.	

ASE,	15	Aug	2017	 99	

NCS,	8	June	2017	

•  Designer-created	configuration	files	provide	automation	(red)	for	
-  Container	setup	and	artifact	analysis	

•  Manual	steps	(green)	:	student	runs	lab,	student	sends	artifacts	to	
instructor,	instructor	reviews	assessment	table	

ASE,	15	Aug	2017	 1010	

Student Linux System Instructor Linux System

artifacts

Student
Container

Docker

artifacts

artifacts

Instructor
Container

Docker

artifacts

a

b

f

e

d

c

NCS,	8	June	2017	

goals.config

Please see labdesigner.md

Recorded actions or results of student work to be summarized
for instructor

telnetview = matchany : string_equal : fileview : parameter.FSTRING
sshview = matchany : string_equal : sshfileview : parameter.FSTRING
tcpdump_plain = is_true : tcpdumprun
failed_login = is_true : failed_login 1111	

results.config

Please see labdesigner.md

The following are meant to identify artifacts from telnet lab

fileview = client:telnet.stdout : 4 : STARTSWITH : My string is:
sshfileview = client:ssh.stdout : 4 : STARTSWITH : My string is:
tcpdumprun = server:tcpdump.stdout : CONTAINS : mydoghas
failed_login = server:/var/log/auth.log : CONTAINS : FAILED LOGIN

ASE,	15	Aug	2017	

NCS,	8	June	2017	

Filename : start.config
Description:
A simple configuration file read by start.py

Defines the containers used by both students and instructors

GLOBAL_SETTINGS
 # GRADE_CONTAINER - container where instructor will perform grading

GRADE_CONTAINER client
HOST_HOME_XFER - directory to transfer artifact to/from containers
HOST_HOME_XFER seed_dir/

LAB_MASTER_SEED - this is the master seed string specific to this laboratory
LAB_MASTER_SEED telnetlab_jean_seed

SUBNETS
NETWORK SOME_NETWORK

MASK 172.20.0.0/24
 GATEWAY 172.20.0.100

Container name and settings

CONTAINER client
USER ubuntu
TERMINALS 2
SOME_NETWORK 172.20.0.2

CONTAINER server
USER ubuntu

TERMINALS 1
SOME_NETWORK 172.20.0.3 1212	

Note	
	

For	a	simple	single-container	
lab,	there	is	a	default	
configuration	file.	

ASE,	15	Aug	2017	

NCS,	8	June	2017	

Parameterization	

ASE,	15	Aug	2017	 1313	

parameter.config

Please see labdesigner.pdf

This string provides per-student parameterization of telnet lab
FSTRING : HASH_REPLACE : telnetlab.server.student=filetoview.txt :
TELNET_STRING : mytelnetfilestirng

•  Labs	parameterized	using	
-  Per	student	unique	string,	e.g.	email	address	
-  Both	student	and	instructor	know	string	

NCS,	8	June	2017	

Assessment	Support		

ASE,	15	Aug	2017	 1414	

telnet SSH tcpdump failed_login
Alan Y X X X
Alice Y Y X X
Barbara Y Y Y Y
Bill X Y Y X
Chuck X X X X
Corrine Y Y Y Y

•  Instructor	starts	the	lab	and	automatically	
-  Containers	created		
-  Student	artifacts	pulled	in	
-  Results	configuration	sets	up	assessment	environment	
-  Loop	through	all	students	using	

• Parameter	configuration	
• Goals	configuration	

-  Table	of	per-student	goals	produced	to	support	assessment	

NCS,	8	June	2017	

Status	and	Near-Term	Objectives	

• A	few	proof	of	concept	labs	from	SEED	
•  Current	Labs	

-  Format	string	(printf)	vulnerabilities	
-  Buffer	overflow	
-  Forensics	
-  Cryptographic	hashes	
-  Telnet	(plaintext	password	on	the	network)	
-  VPN	(configuring	Openvpn	to	protect	traffic)	
-  nmap	
-  gdb	introduction	
-  Several	more	

		
ASE,	15	Aug	2017	 1515	

NCS,	8	June	2017	

Status	and	Near-Term	Objectives	

•  Summer	2017	
-  Internal	testing	
-  Three	highschool	interns	
-  Additional	labs,	e.g.	ICS	security	

•  Early	Fall	2017,	initial	general	release 		

ASE,	15	Aug	2017	 1616	

NCS,	8	June	2017	

Join	the	Labtainers	Team	

•  The	beta	version	of	Labtainers	can	be	found	at	
http://my.nps.edu/web/cisr/labtainers	

Contact	
Cynthia	Irvine	irvine@nps.edu	

Mike	Thompson	mftomps@nps.edu	

	
Department	of	Computer	Science	

Naval	Postgraduate	School	
Monterey,	CA		93943			U.S.A	

		
	ASE,	15	Aug	2017	 1717	

