Teaching Data-driven Security: A Course on Security Analytics*

Rakesh M. Verma

ReDAS Laboratory
Computer Science Dept.
University of Houston

ReDAS Mission: Research & education in Reasoning, Data Analytics and Security

University of Houston is an NSA/DHS certified center of academic excellence in Information Assurance/Cyber Defense Research AND Education

* Supported by NSF

8/16/2016 Verma – ASE@USENIX 2016
Outline

• What is Security Analytics?
• Why do we need it?
• A Security Analytics course
• Discussion
What is Security Analytics?

• Adaptation (not direct application) of techniques from
 – Statistics
 – Data Mining
 – Machine Learning
 – Natural Language Processing

to challenges in cyber security
Why Adaptation?

- Availability/diversity of data
- $$\text{fp}, \text{fn}$$
- 115 phishing emails from July 2012-Aug 2013

[Verma et al., IEEE Security and Privacy, Nov/Dec 2015]
A Security Analytics Course

• Offered at University of Houston in Spring 2015 and 2016
• Senior undergrads (total 22) and grads (total 13)
• Prerequisites:
 – All undergrad math courses for CS major (calculus, prob. & stat., linear algebra, discrete math)
 – Data Structures (3rd CS course)
A Security Analytics Course

• Modular format with a module each on:
 – Quick review of a few key concepts (1 week)
 – Basics of security (4 weeks)
 – Data Mining for security (2.5 weeks)
 – Machine Learning for security (4 weeks)
 – Natural Language Processing for security (3 weeks)
What’s in a module?

• Pretest (20-30 min)
• Content
• One homework assignment
• 2-3 Practical exercises
• Posttest (same duration as pretest)
• Quiz (50-55 min)
Basics of Security

• Basic security goals (CIA…) and mechanisms (passwords, crypto, …)
• Malware
• Intrusion detection
• Email security
• Software security
Data Mining for Security

- Data (types and operations)
- Preprocessing and Visualization
- Association rule mining (Computer Crash → DoS)
- Clustering (Virus, Worm, Rootkit)
- Anomaly detection
- Security examples: malware clustering, credit card fraud
Machine Learning for Security

• Basics: kNN, decision tree, naïve bayes
• SVMs (basic and soft margin)
• Neural networks
• One-class learning, semi-supervised learning
• Malware detection, intrusion detection and spam/phishing
• Attack on machine learning models
Some Attacks

• Attacks on SpamBayes
 – Dictionary attack
 – Targeted attack

[A taxonomy of attacks and more examples at: The Security of Machine Learning by Barreno et al.]
Natural Language Processing for Security

- Language models
- Statistical techniques
- Markov models
- Part-of-speech tagging
- Word sense disambiguation
- Semantics (e.g., via WordNet)
- Applications to security (passwords, spam, phishing, malware)
Grading

- A project is a key component in addition to
 - homework, practical exercises (Weka, R, …), post-test and quizzes
 - Real-world dataset studied with two or three techniques
 - Example: Adapting SVMs and clustering for malware
Feedback

• Quantitative analysis is in progress
• Qualitative feedback examples
 – Security applications need to be more prominent in each model
 + Best course I have taken (undergrad)
 + Learned more about X in this course than I did in courses dedicated to X (grad), where X = data mining, machine learning
Discussion

Thank You!

• Suggestions, Comments and Questions

• But, what about:
 – ensemble learning
 – cost-sensitive learning
 – game theory
 –
Contacts

Slides and other materials: http://capex.cs.uh.edu

ReDAS Lab: http://www.cs.uh.edu/~rmverma
Rakesh Verma - rverma@uh.edu