Scalable and Lightweight CTF Infrastructures Using Application Containers

Arvind S Raj, Bithin Alangot, Seshagiri Prabhu and Krishnashree Achuthan

Amrita Center for Cybersecurity Systems and Networks
Amrita Vishwa Vidyapeetham, Kerala, India

2016 USENIX Advances in Security Education Workshop
CTFs - an effective means to teach secure coding and computer security.

Two popular formats: Jeopardy and Attack-defence.

Jeopardy: Self-paced, offence only, non-interactive and more popular.

Attack-defence: Real-time, offence and defence, interactive but less popular.
CTF event counts from 2011 to 2015

- **Attack-Defence**
- **Jeopardy**

Event counts:

- **2011**: Attack - 6, Jeopardy - 12
- **2012**: Attack - 10, Jeopardy - 23
- **2013**: Attack - 13, Jeopardy - 41
- **2014**: Attack - 8, Jeopardy - 48
- **2015**: Attack - 12, Jeopardy - 65
Participation trends

Average participant count in CTFs from 2011 to 2015

- Attack-Defence
- Jeopardy

<table>
<thead>
<tr>
<th>Year</th>
<th>Attack-Defence</th>
<th>Jeopardy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>40</td>
<td>103</td>
</tr>
<tr>
<td>2012</td>
<td>28</td>
<td>151</td>
</tr>
<tr>
<td>2013</td>
<td>41</td>
<td>183</td>
</tr>
<tr>
<td>2014</td>
<td>25</td>
<td>236</td>
</tr>
<tr>
<td>2015</td>
<td>33</td>
<td>252</td>
</tr>
</tbody>
</table>
Format challenges

- Both organizers and participants face challenges.
- Organizers: Complex infrastructure engineering and high resource requirements.
- Participants: Complex gameplay, infrastructure setup and IT policies.
Problem

Can we build less resource intensive and easily scalable contest infrastructures?
Solution

Replace virtual machines with application containers.

- Significant reduction in resource usage and engineering required.
- Eliminates several difficult to setup components.
- Improves gameplay experience for participants.
Outline of presentation

1. Challenges in existing attack-defence CTF game format and infrastructures
2. Overview of Docker and associated technologies
3. Container-based attack-defence CTF game infrastructure
4. Performance evaluation
5. Future work
6. Conclusion
1. Challenges in existing attack-defence CTF game format and infrastructures

2. Overview of Docker and associated technologies

3. Container-based attack-defence CTF game infrastructure

4. Performance evaluation

5. Future work

6. Conclusion
Challenges

- 2 sources: gameplay and game infrastructure.

- Gameplay affects participants: requires doing too many tasks.

- Distracts them from primary objective.

- Infrastructure affects organizers and participants.

- 2 infrastructure types: distributed and centralized.
Distributed infrastructure

Players of team 1

Players of team 2

Players of team 3

Game Masters

Game Server

Switch

Gateway

VPN Server

VPN Gateway

10.1.x.1

VPN Gateway

10.1.x.3

Server

10.1.x.2

VirtualBox

(Vulnerable Image)

10.1.x.3

Server

10.1.x.2

VirtualBox

(Vulnerable Image)

10.1.x.3

Internet / WWW

Arvind, Bithin, Seshagiri, Krishnashree — Scalable and Lightweight CTF Infrastructures Using Application Containers
Challenges

- **Organizers**
 - Infrastructure needs lot of resources, engineering and monitoring.
 - eg: rwthCTF 2012’s VPN server: 16GB RAM, 8 core i7 processor and 8 OpenVPN daemon processes.

- **Participants**
 - Difficult to obtain hardware such as computers and network switches/routers.
 - University IT policies prevent connecting to UDP based VPNs.
Existing game infrastructures

Centralized infrastructure

Players

Game dashboard

Game database

Scorebot

Vulnerable VM Cluster

Game infrastructure
Challenges

Organizers

- Exponential increase in computing resources required.
- Setting up exploit sandboxes, installing libraries and executing exploits.

Participants

- Network latency when accessing services.
- Recreating services locally for analysis and testing is not straightforward.
- Locked in to a standard exploit environment.
1. Challenges in existing attack-defence CTF game format and infrastructures

2. Overview of Docker and associated technologies

3. Container-based attack-defence CTF game infrastructure

4. Performance evaluation

5. Future work

6. Conclusion
Docker vs Virtual machines

Figure: Virtual Machines

- App 1
 - Bins/Libs
 - Guest OS
- App 2
 - Bins/Libs
 - Guest OS
- App 3
 - Bins/Libs
 - Guest OS

Figure: Docker containers

- App 1
 - Bins/Libs
- App 2
 - Bins/Libs
- App 3
 - Bins/Libs

Images courtesy www.docker.com
Why Docker?

- Built-in container image reuse and extend capabilities.
- Remote API and programming language bindings aid in automation.
- Easy to share and distribute container images.
- Third party tools for container and image management.
Distribution and PORTUS

- Docker Inc’s Distribution: Tool to manage container images - similar to a Git server.
- SUSE’s PORTUS: Role-based access control of Distribution’s images.
- Allows creating namespaces for teams and assigning different access levels to them.
- Alternatives: GitLab, Dockerhub, Amazon EC2 container service, Google Container Registry and more.
Outline

1. Challenges in existing attack-defence CTF game format and infrastructures
2. Overview of Docker and associated technologies
3. Container-based attack-defence CTF game infrastructure
4. Performance evaluation
5. Future work
6. Conclusion
Components

- **Container registry**: Git server like service for container images.
- **Container hosts**: Servers which run all the containers.
- **Service related containers**: Docker containers which either run a service or an exploit for a service.
- **Flag volume**: Docker volumes for persistent storage of flags.
- Modified versions of components of the iCTF centralized framework.
Gameplay

Organizers

- Configure a CTF contest as desired.
- Build the service container images.
- Configure the container registry and upload service container images to it.
- Setup the game database and configure all game scripts.
- Optionally distribute encrypted copies of service container images to all teams.
Participants

- Import the service container images from registry or organizer distributed copies.

- Analyze services for vulnerabilities, fix them and commit and upload changes to container registry.

- Create exploit containers for discovered vulnerabilities in accordance with the requirements, test them locally and upload them.
A game consists of several rounds with following phases

- **Synchronize**: All updated container images are synchronized with their live containers or images.
- **Store flags**: Flags are stored in all services of all teams and services’ status is updated.
- **Run exploits**: All exploit containers are run against all services of all teams except exploit author.
- **Retrieve flags**: Flags stored earlier are retrieved, service status is updated and points are deducted if not retrieved successfully.
Benefits for organizers

- Lightweight game infrastructure.
- No need for engineering and monitoring VPN network.
- No need for configuring exploit environments.
- Tools like Docker swarm and Docker cloud further ease managing infrastructure.
Benefits for participants

- No additional hardware, dealing with IT policies or setting up VPN.
- No dealing with network latency: setup services locally.
- Infrastructure maintains service backups, simplifying gameplay.
- Fully customizable exploit environments.
Outline

1. Challenges in existing attack-defence CTF game format and infrastructures
2. Overview of Docker and associated technologies
3. Container-based attack-defence CTF game infrastructure
4. Performance evaluation
5. Future work
6. Conclusion
Experiments performed

- Two kinds of experiments
 - 3 services, 5 to 40 teams.
 - 30 teams, 1 to 8 services.

- Measure CPU utilization and memory usage for a 10 minute game round.

- Worst case: All teams write exploits for all services.

- Compare with estimated usage in VM based infrastructure.
Estimating VM resource usage

- Simulating requires high amounts of resources.
- Estimate based on requirements for InCTF’s attack-defence round.
- 1GB RAM for 3 services found sufficient in past 5 editions.
- 200MB RAM per service and rest for the OS.
Observations

- Container server: 16GB RAM and 8 core Intel Core i5 2600 processor.
- Highest memory usage: 3.4GB and 4.4GB. Exploits included.
- Estimated usage for VMs: 40GB and 60GB. Exploits not included.
- Highest CPU usage observed 13% and 20%.
- Can easily handle loads comparable to most attack-defence CTFs today.
Outline

1. Challenges in existing attack-defence CTF game format and infrastructures
2. Overview of Docker and associated technologies
3. Container-based attack-defence CTF game infrastructure
4. Performance evaluation
5. Future work
6. Conclusion
Future work

- Develop techniques and identify tuning parameters to prevent overloading of Docker daemon with several simultaneous requests.
- Provide teams access to network traffic captures for reverse engineering exploits.
- Identify parameters to determine utility of CTF game infrastructures.
- Perform usability study of container-based infrastructure.
Outline

1. Challenges in existing attack-defence CTF game format and infrastructures
2. Overview of Docker and associated technologies
3. Container-based attack-defence CTF game infrastructure
4. Performance evaluation
5. Future work
6. Conclusion
Conclusion

- Existing attack-defence CTF game infrastructures are complex to setup and require several computing resources.
- Using application containers instead of virtual machines reduces resource requirement and engineering effort needed.
- Additional tools can improve gameplay experience for participants and further simplify infrastructure management.
Figure: Average memory usage: 3 services, multiple teams
Figure: Average memory usage: 30 teams, multiple services
Figure: Average CPU usage: 3 services, multiple teams
Figure: Average CPU usage: 30 teams, multiple services