
Software Techniques for Avoiding

Hardware Virtualization Exits

Ole Agesen Jim Mattson Radu Rugina Jeffrey Sheldon

VMware

Server Virtualization

Source: IDC Worldwide Virtualization Tracker

% virtualized workloads world wide

x86 Virtualization

Guest

VMM

• Virtual Machine Monitor

(VMM) abstracts physical

hardware

• Two approaches:

• Binary Translation (BT)

• Hardware-Assisted (HV)

 (Intel VT-x and AMD-V)

Hardware

Guest

VMM

Guest execution using

Hardware Virtualization (HV)

Virtual Machine Monitor (VMM)

exit resume

Hardware-Assisted x86 Virtualization

Virtualization Exits Are Expensive

Microarchitecture

Launch Date

Hardware

Exit + Resume

(cycles)

 Prescott 2005 3963

 Merom 2006 1579

 Penryn 2008 1266

 Nehalem 2009 1009

 Westmere 2010 761

 Sandy Bridge 2011 784

Guest execution using

Hardware Virtualization (HV)

Virtual Machine Monitor (VMM)

This Talk: Cluster HV Exits

Guest execution using

Hardware Virtualization (HV)

Virtual Machine Monitor (VMM)

This Talk: Cluster HV Exits

Outline

• Exit Pairs

• Exit Clusters

• Nested Virtual Machines

• Results

• Conclusions

Exit Pairs

• 32-bit Guest OS using Physical

Address Extension (PAE)

• Shadow paging

• Page table entry updates use

two 32-bit writes

• Each write causes an exit

...

...

mov 4(%ecx), %esi

mov (%ecx), %ebx

Guest

Exit Pairs

mov 4(%ecx), %esi

mov (%ecx), %ebx

...

...

VMM updates shadow

page table entries

Guest VMM

Exit Pairs

mov 4(%ecx), %esi

mov (%ecx), %ebx

...

...

Upon exit:
- VMM inspects next instruction

- Detects access to adjacent byte

- Executes both instructions

Guest VMM

Exit Pairs

mov 4(%ecx), %esi

mov (%ecx), %ebx

...

...

Guest VMM

Upon exit:
- VMM inspects next instruction

- Detects access to adjacent byte

- Executes both instructions

- Optimizes execution

Exit Clusters

• Upon exit:

• Scan a few (up to 16) instructions downstream

• Identify exiting instructions

• Form a cluster of instructions, executed all at once

• Challenges:

• Cluster formation

• Efficient execution

Cluster Formation

in %al, %dx

Guest VMM

HV exit occurs

Cluster Formation

in %al, %dx

Guest

out 0x80, %al

mov %al, %cl

mov %dl, 0xc0

out %al, %dx

out 0x80, %al

VMM

xchg %ah, %al

xor %cl, %cl

HV exit occurs

Decode instructions

Cluster Formation

in %al, %dx

Guest VMM

xchg %ah, %al

xor %cl, %cl

HV exit occurs

Decode instructions

Identify exiting instructions
out 0x80, %al

mov %al, %cl

mov %dl, 0xc0

out %al, %dx

out 0x80, %al

Cluster Formation

in %al, %dx

Guest

out 0x80, %al

mov %al, %cl

mov %dl, 0xc0

out %al, %dx

out 0x80, %al

VMM

HV exit occurs

Decode instructions

Identify exiting instructions

Form cluster

Cluster Formation

in %al, %dx

Guest

out 0x80, %al

mov %al, %cl

mov %dl, 0xc0

out %al, %dx

out 0x80, %al

VMM

HV exit occurs

Decode instructions

Identify exiting instructions

Form cluster gap fillers

Cluster Formation

in %al, %dx

Guest

out 0x80, %al

mov %al, %cl

mov %dl, 0xc0

out %al, %dx

out 0x80, %al

VMM

HV exit occurs

Decode instructions

Identify exiting instructions

Form cluster

Execute and resume HV

Efficient Exit Handling

• Cluster translation:

• Generate a translation for the cluster

• Insert it in a Translation Cache (TC)

• Specialize translations (e.g., on addressing mode)

• Translation reuse:

• Compile once

• Reuse for all subsequent exits

Cluster Translation

in %al, %dx

Guest

out 0x80, %al

mov %al, %cl

mov %dl, 0xc0

out %al, %dx

out 0x80, %al

Coherency

Checks

Code

Translation

Dynamic Cluster Formation

out %al, %dx

Guest

mov %cx, -0x12(%bp)

sub %si, %cx

mov %dl, 0x3c5

mov %al, 0x1

out %al, %dx

shr %bl

sbb %ah, %ah

shl %al

mov es:(%di), %ah

out %al, %dx

mov %cx, -0x12(%bp)

sub %si, %cx

mov %dl, 0x3c5

mov %al, 0x1

out %al, %dx

shr %bl

sbb %ah, %ah

shl %al

mov es:(%di), %ah

Do memory accesses

cause exits?

Dynamic Cluster Formation

Guest

out %al, %dx

mov %cx, -0x12(%bp)

sub %si, %cx

mov %dl, 0x3c5

mov %al, 0x1

out %al, %dx

shr %bl

sbb %ah, %ah

shl %al

mov es:(%di), %ah

Do memory accesses

cause exits?

Sometimes.

Dynamic Cluster Formation

Guest

Instruction Classification

• Strongly exiting:

• Always cause exits

• Examples: in, out, cpuid

• Weakly exiting :

• Dynamic exiting behavior

• Example: memory accesses

• Runtime VMM support for detecting such cases

out %al, %dx

sub %si, %cx

mov %dl, 0x3c5

mov %al, 0x1

out %al, %dx

shr %bl

sbb %ah, %ah

shl %al

mov es:(%di), %ah

Translation postponed

Count exits

Translate on 3rd exit

Dynamic Cluster Formation

Guest

3

0

2

0

0

0

2

0

0

0 mov %cx, -0x12(%bp)

out %al, %dx

sub %si, %cx

mov %dl, 0x3c5

mov %al, 0x1

out %al, %dx

shr %bl

sbb %ah, %ah

shl %al

mov es:(%di), %ah

Translation postponed

Count exits

Translate on 3rd exit

Dynamic Cluster Formation

Guest

3

0

2

0

0

0

2

0

0

0 mov %cx, -0x12(%bp)

Cluster With Complex Control-Flow

Nested Virtual Machines

Nested VMs

Inner

Guest

Inner VMM

Outer VMM

Outer Guest • Run hypervisor as a guest
[Ben-Yehuda et al., OSDI’10]

• Simulate large-scale

virtualized environments

with fewer hosts

• Training, testing, debugging

• “Windows XP mode” in Win 7

HV for Nested VMs

Inner

Guest

Inner VMM

Outer VMM

Outer Guest • Outer VMM transitions

• Handled in hardware

• Inner VMM transitions

• Virtual hardware exits are

emulated in software

HV for Nested VMs

Inner

Guest

Inner VMM

Outer VMM

Outer Guest • Outer VMM transitions

• Handled in hardware

• Inner VMM transitions

• Virtual hardware exits are

emulated in software

• Virtual software exit path has lots

of exiting instructions
(e.g., vmread, vmwrite)

HV for Nested VMs

Inner

Guest

Inner VMM

Outer VMM

Outer Guest • Outer VMM transitions

• Handled in hardware

• Inner VMM transitions

• Virtual hardware exits are

emulated in software

• Virtual software exit path has lots

of exiting instructions
(e.g., vmread, vmwrite)

• 10x slowdown!

Exit Avoidance

• Cluster inner exits

• Big impact due to high cost of

inner exits

• Cluster outer exits:

• Big impact due to the high

frequency of outer exits

• Opportunity: cluster-friendly

VMM instruction scheduling

Inner

Guest

Inner VMM

Outer VMM

Outer Guest

Experimental Results

Implementation

• Fully implemented in VMware products

• Workstation, Fusion, ESX

• Evolved over many years from exit pairs to

complex clusters

• Validated by use in the field

Non-Nested VMs

• PassMark (2D graphics benchmark)

• Clustering improves score by 50% - 80%

• VMmark (virtualization benchmark)

• Consistent exit rate reduction

• No measurable runtime improvement

• Netperf against a VM with virtual e1000 NIC

• 24% reduction of exits per packet roundtrip

Nested VM Speedup

Kernel-compile workload in the inner VM

50%

40%

30%

20%

10%

Future Directions

• Support more complex clusters

• Non-contiguous clusters

• Exits in the middle of loops

• Optimize memory accesses in clusters

• Cache and reuse work for accesses on the same page

• Applications to virtualized low-latency workloads

Conclusions

• HV exits are expensive, can sap performance

• Software exit clustering complements hardware

optimizations for HV exits

• Clustering is key to enabling reasonable

performance for nested VMs

