Software Techniques for Avoiding Hardware Virtualization Exits

Ole Agesen Jim Mattson Radu Rugina Jeffrey Sheldon

VMware

Server Virtualization

% virtualized workloads world wide

Source: IDC Worldwide Virtualization Tracker

x86 Virtualization

- Virtual Machine Monitor (VMM) abstracts physical hardware
- Two approaches:
 - Binary Translation (BT)
 - Hardware-Assisted (HV)
 (Intel VT-x and AMD-V)

Hardware-Assisted x86 Virtualization

Virtualization Exits Are Expensive

Microarchitecture	Launch Date	Hardware Exit + Resume (cycles)
Prescott	2005	3963
Merom	2006	1579
Penryn	2008	1266
Nehalem	2009	1009
Westmere	2010	761
Sandy Bridge	2011	784

This Talk: Cluster HV Exits

This Talk: Cluster HV Exits

Outline

- Exit Pairs
- Exit Clusters
- Nested Virtual Machines
- Results
- Conclusions

Guest

```
mov 4(%ecx), %esi
mov (%ecx), %ebx
....
```

- 32-bit Guest OS using Physical Address Extension (PAE)
- Shadow paging
- Page table entry updates use two 32-bit writes
- Each write causes an exit

Guest VMM

mov 4(%ecx), %esi
mov (%ecx), %ebx
...

Upon exit:

- VMM inspects next instruction
- Detects access to adjacent byte
- Executes both instructions
- Optimizes execution

Exit Clusters

Upon exit:

- Scan a few (up to 16) instructions downstream
- Identify exiting instructions
- Form a cluster of instructions, executed all at once

Challenges:

- Cluster formation
- Efficient execution

Guest VMM

in %al, %dx out 0x80, %al mov %al, %cl mov %dl, 0xc0 out %al, %dx out 0x80, %al xchg %ah, %al xor %cl, %cl

HV exit occurs
Decode instructions

Guest VMM

in %al, %dx out 0x80, %al mov %al, %cl mov %dl, 0xc0 out %al, %dx out 0x80, %al xchg %ah, %al xor %cl, %cl

HV exit occurs
Decode instructions
Identify exiting instructions

Guest VMM

in %al, %dx
out 0x80, %al
mov %al, %cl
mov %dl, 0xc0
out %al, %dx
out 0x80, %al

HV exit occurs
Decode instructions
Identify exiting instructions
Form cluster

Guest VMM

in %al, %dx
out 0x80, %al
mov %al, %cl
mov %dl, 0xc0
out %al, %dx
out 0x80, %al

- gap fillers

HV exit occurs
Decode instructions
Identify exiting instructions
Form cluster

Guest VMM

in %al, %dx
out 0x80, %al
mov %al, %cl
mov %dl, 0xc0
out %al, %dx
out 0x80, %al

HV exit occurs
Decode instructions
Identify exiting instructions
Form cluster
Execute and resume HV

Efficient Exit Handling

- Cluster translation:
 - Generate a translation for the cluster
 - Insert it in a Translation Cache (TC)
 - Specialize translations (e.g., on addressing mode)
- Translation reuse:
 - Compile once
 - Reuse for all subsequent exits

Cluster Translation

in %al, %dx
out 0x80, %al
mov %al, %cl
mov %dl, 0xc0
out %al, %dx
out 0x80, %al

Coherency Checks

Code Translation

Guest

```
out %al, %dx
mov %cx, -0x12(%bp)
sub %si, %cx
mov %dl, 0x3c5
mov %al, 0x1
out %al, %dx
shr %bl
sbb %ah, %ah
shl %al
mov es: (%di), %ah
```

Guest

```
out %al, %dx
mov %cx, -0x12(%bp)
sub %si, %cx
mov %dl, 0x3c5
mov %al, 0x1
out %al, %dx
shr %bl
sbb %ah, %ah
shl %al
mov es: (%di), %ah
```

Do memory accesses cause exits?

Guest

```
out %al, %dx
mov %cx, -0x12(%bp)
sub %si, %cx
mov %dl, 0x3c5
mov %al, 0x1
out %al, %dx
shr %bl
sbb %ah, %ah
shl %al
mov es: (%di), %ah
```

Do memory accesses cause exits?

Sometimes.

Instruction Classification

- Strongly exiting:
 - Always cause exits
 - Examples: in, out, cpuid
- Weakly exiting:
 - Dynamic exiting behavior
 - Example: memory accesses
 - Runtime VMM support for detecting such cases

Guest

3	out	%al,	%dx
0	mov	%cx,	-0x12(%bp)
0	sub	%si,	%CX
0	mov	%dl,	0x3c5
0	mov	%al,	0x1
2	out	%al,	%dx
0	shr	%bl	
0	sbb	%ah,	%ah
0	shl	%al	
2	mov	es: (di), %ah
10.00		Transfer to	

Translation postponed Count exits
Translate on 3rd exit

Guest

3	out	%al,	%dx
0	mov	%CX,	-0x12(%bp)
0	sub	%si,	%CX
0	mov	%dl,	0x3c5
0	mov	%al,	0x1
2	out	%al,	%dx
0	shr	%bl	
0	sbb	%ah,	%ah
0	shl	%al	
2	mov	es: (di), %ah
FE		THE PARTY OF	

Translation postponed Count exits
Translate on 3rd exit

Cluster With Complex Control-Flow

Nested Virtual Machines

Nested VMs

- Run hypervisor as a guest [Ben-Yehuda et al., OSDI'10]
- Simulate large-scale virtualized environments with fewer hosts
- Training, testing, debugging
- "Windows XP mode" in Win 7

HV for Nested VMs

- Outer VMM transitions
 - Handled in hardware
- Inner VMM transitions
 - Virtual hardware exits are emulated in software

HV for Nested VMs

- Outer VMM transitions
 - Handled in hardware
- Inner VMM transitions
 - Virtual hardware exits are emulated in software
 - Virtual software exit path has lots of exiting instructions (e.g., vmread, vmwrite)

HV for Nested VMs

- Outer VMM transitions
 - Handled in hardware
- Inner VMM transitions
 - Virtual hardware exits are emulated in software
 - Virtual software exit path has lots of exiting instructions (e.g., vmread, vmwrite)
 - 10x slowdown!

Exit Avoidance

- Cluster inner exits
 - Big impact due to high cost of inner exits

- Cluster outer exits:
 - Big impact due to the high frequency of outer exits
 - Opportunity: cluster-friendly
 VMM instruction scheduling

Experimental Results

Implementation

- Fully implemented in VMware products
 - Workstation, Fusion, ESX
- Evolved over many years from exit pairs to complex clusters
- Validated by use in the field

Non-Nested VMs

- PassMark (2D graphics benchmark)
 - Clustering improves score by 50% 80%
- VMmark (virtualization benchmark)
 - Consistent exit rate reduction
 - No measurable runtime improvement
- Netperf against a VM with virtual e1000 NIC
 - 24% reduction of exits per packet roundtrip

Nested VM Speedup

Kernel-compile workload in the inner VM

Future Directions

- Support more complex clusters
 - Non-contiguous clusters
 - Exits in the middle of loops
- Optimize memory accesses in clusters
 - Cache and reuse work for accesses on the same page
- Applications to virtualized low-latency workloads

Conclusions

- HV exits are expensive, can sap performance
- Software exit clustering complements hardware optimizations for HV exits
- Clustering is key to enabling reasonable performance for nested VMs