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Server Virtualization 

Source: IDC Worldwide Virtualization Tracker 

% virtualized workloads world wide 



x86 Virtualization 

Guest 

VMM 

• Virtual Machine Monitor 

(VMM) abstracts physical 

hardware 

• Two approaches: 

• Binary Translation (BT) 

• Hardware-Assisted (HV) 

   (Intel VT-x and AMD-V) 

Hardware 

Guest 

VMM 



Guest execution using 

Hardware Virtualization (HV) 

Virtual Machine Monitor (VMM) 

exit resume 

Hardware-Assisted x86 Virtualization 



Virtualization Exits Are Expensive 

 

Microarchitecture 

 

Launch Date 

Hardware 

Exit + Resume 

(cycles) 

  Prescott 2005 3963 

  Merom 2006 1579 

  Penryn 2008 1266 

  Nehalem 2009 1009 

  Westmere 2010 761 

  Sandy Bridge 2011 784 
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• Exit Pairs 

• Exit Clusters 

• Nested Virtual Machines 

• Results 

• Conclusions 

 



Exit Pairs 

• 32-bit Guest OS using Physical 

Address Extension (PAE) 

• Shadow paging 

• Page table entry updates use 

two 32-bit writes 

• Each write causes an exit 

... 

... 

mov 4(%ecx), %esi 

mov (%ecx), %ebx 

Guest 



Exit Pairs 

mov 4(%ecx), %esi 

mov (%ecx), %ebx 

... 

... 

VMM updates shadow 

page table entries 

Guest VMM 



Exit Pairs 

mov 4(%ecx), %esi 

mov (%ecx), %ebx 

... 

... 

Upon exit: 
- VMM inspects next instruction 

- Detects access to adjacent byte 

- Executes both instructions 

Guest VMM 



Exit Pairs 

mov 4(%ecx), %esi 

mov (%ecx), %ebx 

... 

... 

Guest VMM 

Upon exit: 
- VMM inspects next instruction 

- Detects access to adjacent byte 

- Executes both instructions 

- Optimizes execution 



Exit Clusters 

• Upon exit: 

• Scan a few (up to 16) instructions downstream 

• Identify exiting instructions  

• Form a cluster of instructions, executed all at once 

• Challenges: 

• Cluster formation 

• Efficient execution 

 

 



Cluster Formation 
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Guest VMM 

HV exit occurs 
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Cluster Formation 

in %al, %dx 

Guest VMM 

xchg %ah, %al 

xor %cl, %cl 
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Decode instructions 

Identify exiting instructions 
out 0x80, %al 

mov %al, %cl 

mov %dl, 0xc0 

out %al, %dx 

out 0x80, %al 
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Cluster Formation 

in %al, %dx 
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mov %dl, 0xc0 

out %al, %dx 

out 0x80, %al 

VMM 
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Cluster Formation 

in %al, %dx 

Guest 

out 0x80, %al 

mov %al, %cl 

mov %dl, 0xc0 

out %al, %dx 

out 0x80, %al 

VMM 

HV exit occurs 

Decode instructions 

Identify exiting instructions 

Form cluster 

Execute and resume HV 



Efficient Exit Handling 

• Cluster translation: 

• Generate a translation for the cluster 

• Insert it in a Translation Cache (TC) 

• Specialize translations (e.g., on addressing mode) 

• Translation reuse: 

• Compile once 

• Reuse for all subsequent exits 

 

 



Cluster Translation 

in %al, %dx 

Guest 

out 0x80, %al 

mov %al, %cl 

mov %dl, 0xc0 

out %al, %dx 

out 0x80, %al 

Coherency 

Checks 

Code  

Translation 



Dynamic Cluster Formation 

out %al, %dx 

Guest 

mov %cx, -0x12(%bp) 

sub %si, %cx 

mov %dl, 0x3c5 

mov %al, 0x1 

out %al, %dx 

shr %bl 

sbb %ah, %ah 

shl %al 

mov es:(%di), %ah 



out %al, %dx 

mov %cx, -0x12(%bp) 

sub %si, %cx 

mov %dl, 0x3c5 

mov %al, 0x1 

out %al, %dx 

shr %bl 

sbb %ah, %ah 

shl %al 

mov es:(%di), %ah 

Do memory accesses 

cause exits? 

Dynamic Cluster Formation 

Guest 



out %al, %dx 

mov %cx, -0x12(%bp) 

sub %si, %cx 

mov %dl, 0x3c5 

mov %al, 0x1 

out %al, %dx 

shr %bl 

sbb %ah, %ah 

shl %al 

mov es:(%di), %ah 

Do memory accesses 

cause exits? 
 

Sometimes. 

Dynamic Cluster Formation 

Guest 



Instruction Classification 

• Strongly exiting: 

• Always cause exits 

• Examples: in, out, cpuid 

• Weakly exiting : 

• Dynamic exiting behavior 

• Example: memory accesses 

• Runtime VMM support for detecting such cases 

 

 



out %al, %dx 

sub %si, %cx 

mov %dl, 0x3c5 

mov %al, 0x1 

out %al, %dx 

shr %bl 

sbb %ah, %ah 

shl %al 

mov es:(%di), %ah 

Translation postponed 

Count exits 

Translate on 3rd exit 

Dynamic Cluster Formation 

Guest 
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0 mov %cx, -0x12(%bp) 



out %al, %dx 

sub %si, %cx 

mov %dl, 0x3c5 

mov %al, 0x1 

out %al, %dx 

shr %bl 

sbb %ah, %ah 

shl %al 

mov es:(%di), %ah 

Translation postponed 

Count exits 

Translate on 3rd exit 

Dynamic Cluster Formation 

Guest 

3 

0 

2 

0 

0 

0 
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0 

0 

0 mov %cx, -0x12(%bp) 



Cluster With Complex Control-Flow 



Nested Virtual Machines 



Nested VMs 

Inner 

Guest 

Inner VMM 

Outer VMM 

Outer Guest • Run hypervisor as a guest 
[Ben-Yehuda et al., OSDI’10] 

 

• Simulate large-scale 

virtualized  environments 

with fewer hosts 
 

• Training, testing, debugging  

• “Windows XP mode” in Win 7 

 



HV for Nested VMs 
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Outer VMM 

Outer Guest • Outer VMM transitions 

• Handled in hardware 
 

• Inner VMM transitions 

• Virtual hardware exits are 

emulated in software 
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HV for Nested VMs 

Inner 

Guest 

Inner VMM 

Outer VMM 

Outer Guest • Outer VMM transitions 

• Handled in hardware 
 

• Inner VMM transitions 

• Virtual hardware exits are 

emulated in software 

• Virtual software exit path has lots 

of exiting instructions             
(e.g., vmread, vmwrite) 

• 10x slowdown! 



Exit Avoidance 

• Cluster inner exits 

• Big impact due to high cost of 

inner exits  

 

• Cluster outer exits: 

• Big impact due to the high 

frequency of outer exits  

• Opportunity: cluster-friendly 

VMM instruction scheduling  

 

Inner 

Guest 

Inner VMM 

Outer VMM 

Outer Guest 



Experimental Results 



Implementation 

 

• Fully implemented in VMware products 

• Workstation, Fusion, ESX 

• Evolved over many years from exit pairs to 

complex clusters 

• Validated by use in the field 

 



Non-Nested VMs 

• PassMark (2D graphics benchmark) 

• Clustering improves score by 50% - 80% 

• VMmark (virtualization benchmark) 

• Consistent exit rate reduction 

• No measurable runtime improvement 

• Netperf against a VM with virtual e1000 NIC 

•  24% reduction of exits per packet roundtrip  

 



Nested VM Speedup 

Kernel-compile workload in the inner VM 

50% 

40% 

30% 

20% 

10% 



Future Directions 

• Support more complex clusters 

• Non-contiguous clusters 

• Exits in the middle of loops 

• Optimize memory accesses in clusters 

• Cache and reuse work for accesses on the same page 

• Applications to virtualized low-latency workloads 

 



Conclusions 

 

• HV exits are expensive, can sap performance 

• Software exit clustering complements hardware 

optimizations for HV exits 

• Clustering is key to enabling reasonable 

performance for nested VMs 

 


