Power and Performance Analysis of GPU-Accelerated Systems

*Kyushu University
**Laboratoire Bordelais de Recherche en Informatique
***Nagoya University
Graphics Processing Units (GPUs)

- GPUs have become popular
 - Significant performance (peak performance of 3 TFLOPS for the latest Kepler GPUs)
 - Running general applications (GPGPU)
Power Consumption of GPUs

- Power consumption of most GPUs is higher than that of CPUs

![Graph showing power consumption of NVIDIA GPUs and Intel CPUs over time.](image-url)
Power Consumption of GPUs

• Power consumption of most GPUs is higher than that of CPUs

Demand for reducing the power consumption of GPUs
Power Consumption of GPUs

- Power consumption of most GPUs is higher than that of CPUs.

Demand for reducing the power consumption of GPUs

DVFS on GPUs
DVFS on GPU-Accelerated Systems

• DVFS is a popular way to reduce the power consumption of CPUs

• We answer to two questions through this study:
 - Is CPU frequency scaling effective?
 - Is GPU frequency scaling effective?
Experimental Setup

• GPU: NVIDIA GeForce GTX480
• CPU: Intel Core i5-2400
• OS: Linux Kernel : 3.3.0+
• Benchmark programs
 – 3 benchmark programs from Rodinia Benchmarks
 – Micro benchmark (Matrix Multiplication)
Available Frequencies

- GPU frequencies

<table>
<thead>
<tr>
<th>Clock Domain</th>
<th>Low [MHz]</th>
<th>High [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>405</td>
<td>700</td>
</tr>
<tr>
<td>Memory</td>
<td>324</td>
<td>1848</td>
</tr>
</tbody>
</table>

- CPU frequencies

<table>
<thead>
<tr>
<th>Clock Domain</th>
<th>Low [MHz]</th>
<th>High [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>2700</td>
<td>3300.1</td>
</tr>
</tbody>
</table>
GPU Runtime and Driver

- NVIDIA proprietary software
 - Change GPU’s frequency by modifying BIOS file
 - Require to reload the driver when changing GPU’s frequency
- Gdev [Kato et al, USENIX ATC’12]
 - Open-source runtime and driver
 - Allows the system to change GPU’s frequency dynamically at runtime through the Linux “/proc” file system interface
 - The GPU memory frequency is fixed at 135MHz
Measuring Power Consumption

• Power meter: YOKOGAWA WT1600 Digital Power Meter

• Obtain the voltage and electric current from power plug of the machine
 - Measure every 50 ms

Plug in the power plug of the machine
Impact of CPU frequency scaling

• Compare 2 frequency settings:
 (1) **CPU-High** and (2) **CPU-Low**
 - CPU’s clock is set to Low when idle
 - GPU’s core clock is set to High when executing a CUDA kernel; otherwise Low

• 3 benchmarks (heartwall, srad and hotspot) from Rodinia benchmarks
 - CPU and GPU intensive workloads
• Energy consumption can’t be reduced with CPU-Low

• This is counter-intuitive considering CPU-only system
Idle Power

- Idle power consumption of GPU is larger than that of CPU
- Increased execution time in GPU-accelerated system wastes power
Idle Power

- Idle power consumption of GPU is larger than that of CPU.
- Increased execution time in GPU-accelerated system wastes power.

CPU is a weak factor
Impact of GPU frequency scaling

• Compare 4 frequency settings:
 (1) Mem-High and Core-High
 (2) Mem-High and Core-Low
 (3) Mem-Low and Core-High
 (4) Mem-Low and Core-Low

 - CPU clock is always set to Low

• Matrix Multiplication (small and large inputs)

 - GPU intensive workloads
Evaluation Result

• When input size is small, the program is core bound
 – Memory clock can be down-scaled retaining the performance

• When input size is large, the program is core and memory bound
 – GPU clocks cannot be down-scaled retaining the performance
Evaluation Result

- When input size is small, the program is core bound
 - *Memory clock can be down-scaled retaining the performance*

- When input size is large, the program is core and memory bound
 - *GPU clocks cannot be down-scaled retaining the performance*
Evaluation Result

- When input size is small, the program is core bound
 - *Memory clock can be down-scaled retaining the performance*

- When input size is large, the program is core and memory bound
 - *GPU clocks cannot be down-scaled retaining the performance*
Conclusions

• CPU is a weak factor for energy savings of GPU-accelerated systems

• Effective voltage and frequency scaling of the GPU can reduce the power consumption retaining the performance
Thank you for your attention!